論文の概要: Characterizing User Behavior: The Interplay Between Mobility Patterns and Mobile Traffic
- arxiv url: http://arxiv.org/abs/2501.19348v2
- Date: Mon, 24 Mar 2025 17:19:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:28:14.667612
- Title: Characterizing User Behavior: The Interplay Between Mobility Patterns and Mobile Traffic
- Title(参考訳): ユーザの振る舞いを特徴づける - モビリティパターンとモバイルトラフィックの相互作用
- Authors: Anne Josiane Kouam, Aline Carneiro Viana, Mariano G. Beiró, Leo Ferres, Luca Pappalardo,
- Abstract要約: 本稿では,ユーザレベルでの交通行動と移動行動の依存性を探求する新しいアプローチを提案する。
チリのいくつかの州で1,337,719人の1週間のXDRデータセットを用いて、我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 1.292711646217355
- License:
- Abstract: Mobile devices have become essential for capturing human activity, and eXtended Data Records (XDRs) offer rich opportunities for detailed user behavior modeling, which is useful for designing personalized digital services. Previous studies have primarily focused on aggregated mobile traffic and mobility analyses, often neglecting individual-level insights. This paper introduces a novel approach that explores the dependency between traffic and mobility behaviors at the user level. By analyzing 13 individual features that encompass traffic patterns and various mobility aspects, we enhance the understanding of how these behaviors interact. Our advanced user modeling framework integrates traffic and mobility behaviors over time, allowing for fine-grained dependencies while maintaining population heterogeneity through user-specific signatures. Furthermore, we develop a Markov model that infers traffic behavior from mobility and vice versa, prioritizing significant dependencies while addressing privacy concerns. Using a week-long XDR dataset from 1,337,719 users across several provinces in Chile, we validate our approach, demonstrating its robustness and applicability in accurately inferring user behavior and matching mobility and traffic profiles across diverse urban contexts.
- Abstract(参考訳): eXtended Data Records(XDR)は、パーソナライズされたデジタルサービスの設計に有用な、詳細なユーザ行動モデリングのための豊富な機会を提供する。
これまでの研究は主に、個人レベルの洞察を無視した、集約されたモバイルトラフィックとモビリティ分析に重点を置いてきた。
本稿では,ユーザレベルでの交通行動と移動行動の依存性を探求する新しいアプローチを提案する。
交通パターンや様々なモビリティの側面を含む13の個々の特徴を解析することにより、これらの挙動の相互作用の理解を深める。
我々の高度なユーザモデリングフレームワークは、時間とともにトラフィックとモビリティの挙動を統合し、ユーザ固有のシグネチャを通じて人口の不均一性を保ちながら、きめ細かい依存関係を可能にする。
さらに,プライバシの問題に対処しながら,重要な依存関係を優先し,移動性からトラフィックの挙動を推定するマルコフモデルを開発した。
チリのいくつかの州にまたがる1,337,719人の1週間のXDRデータセットを用いて、ユーザの振る舞いを正確に推測し、さまざまな都市環境におけるモビリティとトラフィックプロファイルに適合するその堅牢性と適用性を実証し、我々のアプローチを検証する。
関連論文リスト
- Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
本稿では,空間的・時間的領域において,深層学習(DL)技術の強力な階層的特徴学習能力を利用する。
そこで我々は,都市規模の交通分析と予測のためのソリューションを開発した。
論文 参考訳(メタデータ) (2024-10-14T06:53:45Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Holistic Graph-based Motion Prediction [2.365702128814616]
ヘテロジニアスな全体グラフ表現に基づくグラフに基づく動き予測の新しい手法を提案する。
情報は異なるタイプのノードとエッジを通じてエンコードされ、どちらも任意の機能でリッチ化されている。
論文 参考訳(メタデータ) (2023-01-31T10:46:46Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Clustering and Analysis of GPS Trajectory Data using Distance-based
Features [20.91019606657394]
そこで我々は,新たなモビリティ指標であるDaily Characteristics Distanceを提案する。
次に、これらの機能を教師なしの機械学習手法、$k$-meansクラスタリングで使用し、各タイプのユーザ(WorkdayとOffday)に対して3つのクラスタを取得する。
本稿では,クラスタリング結果,すなわちユーザ共通性と平均周波数の分析のための2つの新しい指標を提案する。
論文 参考訳(メタデータ) (2022-12-01T01:25:49Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
本稿では,空間的動的相互作用グラフ(SDG)と行動依存グラフ(BDG)を用いて,交通信号に対する軌道予測手法D2-TPredを提案する。
実験の結果,VTP-TLではADEとFDEでそれぞれ20.45%,20.78%以上を達成できた。
論文 参考訳(メタデータ) (2022-07-21T10:19:07Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
本稿では,歩行者の横断行動を予測するための新しいグラフベースモデルを提案する。
既存のnuScenesデータセットに対して、3Dバウンディングボックスと歩行者行動アノテーションを提供する新しいデータセットを紹介します。
提案手法は,既存の手法と比較して,様々な指標を15%以上改善し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-12-03T18:28:27Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
物体選択と参照のための自動車応用において、手指しと目視が広く研究されている。
既存の車外参照手法は静的な状況に重点を置いているが、移動車両の状況は極めて動的であり、安全性に制約がある。
本研究では,外部オブジェクトを参照するタスクにおいて,各モダリティの具体的特徴とそれら間の相互作用について検討する。
論文 参考訳(メタデータ) (2020-09-23T14:56:19Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Flow descriptors of human mobility networks [0.0]
本研究では,モビリティネットワークの流れとトポロジを特徴付けるシステム解析を提案し,その影響を個別のトレースに評価する。
この枠組みは, 都市計画の評価, 交通の最適化, 外部イベントや状況の影響の計測, 内部動態のモニタリング, 利用者の行動パターンに応じたプロファイル化に適している。
論文 参考訳(メタデータ) (2020-03-16T15:27:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。