論文の概要: Fixing the Double Penalty in Data-Driven Weather Forecasting Through a Modified Spherical Harmonic Loss Function
- arxiv url: http://arxiv.org/abs/2501.19374v1
- Date: Fri, 31 Jan 2025 18:23:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:58:10.803298
- Title: Fixing the Double Penalty in Data-Driven Weather Forecasting Through a Modified Spherical Harmonic Loss Function
- Title(参考訳): 修正球高調波損失関数によるデータ駆動型気象予報における二重ペナルティの固定
- Authors: Christopher Subich, Syed Zahid Husain, Leo Separovic, Jing Yang,
- Abstract要約: GraphCastモデルを微調整すると、鋭い決定論的天気予報、有効解像度が1,250kmから160kmに向上し、アンサンブルの改善が広がる。
- 参考スコア(独自算出の注目度): 2.4020585213586387
- License:
- Abstract: Recent advancements in data-driven weather forecasting models have delivered deterministic models that outperform the leading operational forecast systems based on traditional, physics-based models. However, these data-driven models are typically trained with a mean squared error loss function, which causes smoothing of fine scales through a "double penalty" effect. We develop a simple, parameter-free modification to this loss function that avoids this problem by separating the loss attributable to decorrelation from the loss attributable to spectral amplitude errors. Fine-tuning the GraphCast model with this new loss function results in sharp deterministic weather forecasts, an increase of the model's effective resolution from 1,250km to 160km, improvements to ensemble spread, and improvements to predictions of tropical cyclone strength and surface wind extremes.
- Abstract(参考訳): データ駆動型天気予報モデルの最近の進歩は、従来の物理モデルに基づく主要な運用予測システムを上回る決定論的モデルを提供してきた。
しかし、これらのデータ駆動モデルは典型的には平均二乗誤差損失関数で訓練され、「二重ペナルティ」効果によって微細スケールの平滑化を引き起こす。
本研究では、スペクトル振幅誤差に起因する損失からデコリレーションに起因する損失を分離することにより、この問題を回避するため、この損失関数に対するパラメータフリーな簡単な修正を開発する。
この新たな損失関数でグラフCastモデルを微調整すると、急激な決定論的天気予報、有効解像度の1,250kmから160kmへの増大、アンサンブルの広がりの改善、熱帯性サイクロン強度と表面風極度の予測の改善をもたらす。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - CaFA: Global Weather Forecasting with Factorized Attention on Sphere [7.687215328455751]
本稿では, この問題を緩和するために, 球面測地に適した因子化アテンションモデルを提案する。
提案モデルの1.5円および0-7日のリードタイムにおける決定論的予測精度は、最先端のデータ駆動型機械学習天気予報モデルと同等である。
論文 参考訳(メタデータ) (2024-05-12T23:18:14Z) - FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting [16.562512279873577]
我々は,最大15日間のグローバルアンサンブル天気予報を実現するために設計された,高度なMLモデルであるFuXi-ENSを紹介する。
FuXi-ENS は空間分解能が 0.25 度大きく向上し、13の圧力レベルで5つの大気変数と13の表面変数が組み込まれている。
その結果,FXi-ENSは360変数の98.1%のCRPSと予測リードタイムの組み合わせで,世界有数のNWPモデルであるECMWFのアンサンブル予測よりも優れていた。
論文 参考訳(メタデータ) (2024-05-09T17:15:09Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Improved Loss Function-Based Prediction Method of Extreme Temperatures
in Greenhouses [3.4893854610476267]
温室栽培の分野では、作物が受容可能な極端温室温の予測が不可欠である。
データセットに極端な温度データがないため、モデルを正確に予測することは困難である。
各種機械学習モデルに適した改良された損失関数を提案する。
論文 参考訳(メタデータ) (2021-11-02T04:33:15Z) - Data-Based Models for Hurricane Evolution Prediction: A Deep Learning
Approach [0.0]
ここで提示される多対多のRNN嵐軌道予測モデルは、NHCが使用するアンサンブルモデルよりもはるかに高速である。
モデル予測誤差の詳細な解析により,多対一予測モデルは複合的エラー蓄積による多対多予測モデルよりも精度が低いことが示された。
論文 参考訳(メタデータ) (2021-10-30T00:31:48Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。