Federated Sketching LoRA: On-Device Collaborative Fine-Tuning of Large Language Models
- URL: http://arxiv.org/abs/2501.19389v2
- Date: Sun, 18 May 2025 02:24:58 GMT
- Title: Federated Sketching LoRA: On-Device Collaborative Fine-Tuning of Large Language Models
- Authors: Wenzhi Fang, Dong-Jun Han, Liangqi Yuan, Seyyedali Hosseinalipour, Christopher G. Brinton,
- Abstract summary: Fine-tuning large language models (LLMs) on devices remains a challenging problem.<n>Recent works have fused low-rank adaptation (LoRA) techniques with federated fine-tuning to mitigate challenges associated with device model sizes and data scarcity.<n>We propose federated sketching LoRA, which leverages a sketching mechanism to enable devices to selectively update submatrices of global LoRA modules maintained by the server.
- Score: 18.782733798668122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning large language models (LLMs) on devices remains a challenging problem. Recent works have fused low-rank adaptation (LoRA) techniques with federated fine-tuning to mitigate challenges associated with device model sizes and data scarcity. Still, the heterogeneity of resources remains a critical bottleneck: while higher-rank modules generally enhance performance, varying device capabilities constrain LoRA's feasible rank range. Existing approaches attempting to resolve this issue either lack analytical justification or impose additional computational overhead, leaving a wide gap for efficient and theoretically-grounded solutions. To address these challenges, we propose federated sketching LoRA (FSLoRA), which leverages a sketching mechanism to enable devices to selectively update submatrices of global LoRA modules maintained by the server. By adjusting the sketching ratios, which determine the ranks of the submatrices on the devices, FSLoRA flexibly adapts to device-specific communication and computational constraints. We provide a rigorous convergence analysis of FSLoRA that characterizes how the sketching ratios affect the convergence rate. Through comprehensive experiments on multiple datasets and LLM models, we demonstrate FSLoRA's performance improvements compared to various baselines. The code is available at https://github.com/wenzhifang/Federated-Sketching-LoRA-Implementation.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - AirLLM: Diffusion Policy-based Adaptive LoRA for Remote Fine-Tuning of LLM over the Air [14.089748643405498]
AirLLM is a hierarchical diffusion policy framework for communication-aware LoRA adaptation.<n>AirLLM consistently enhances fine-tuning performance while significantly reducing transmission costs.
arXiv Detail & Related papers (2025-07-15T17:36:37Z) - HSplitLoRA: A Heterogeneous Split Parameter-Efficient Fine-Tuning Framework for Large Language Models [30.345920952847752]
Large language models (LLMs) have achieved remarkable breakthroughs, revolutionizing the natural language processing domain and beyond.<n>Due to immense parameter sizes, fine-tuning these models with private data for diverse downstream tasks has become mainstream.<n>We propose HSplitLoRA, a framework built on split learning (SL) and low-rank adaptation (LoRA) fine-tuning, for efficiently fine-tuning LLMs on heterogeneous client devices.
arXiv Detail & Related papers (2025-05-05T17:09:19Z) - Resource-Efficient Federated Fine-Tuning Large Language Models for Heterogeneous Data [16.844142562389443]
Fine-tuning large language models (LLMs) via federated learning, i.e., FedLLM, has been proposed to adapt LLMs for various downstream applications in a privacy-preserving way.
To reduce the fine-tuning costs on resource-constrained devices, FedLoRA is proposed to fine-tune only a small subset of model parameters by integrating low-rank adaptation (LoRA) into FedLLM.
Here, we propose a hierarchical FedLoRA framework, termed HierFedLoRA, to address these challenges.
arXiv Detail & Related papers (2025-03-27T07:05:22Z) - MSPLoRA: A Multi-Scale Pyramid Low-Rank Adaptation for Efficient Model Fine-Tuning [5.412348391086257]
We propose MSPLoRA, which introduces Global Shared LoRA, Mid-Level Shared LoRA, and Layer-Specific LoRA to capture global patterns, mid-level features, and fine-grained information.<n> Experiments on various NLP tasks demonstrate that MSPLoRA achieves more efficient adaptation and better performance while significantly reducing the number of trainable parameters.
arXiv Detail & Related papers (2025-03-27T07:01:50Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks.<n>Existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks.<n>We propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.<n>Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.<n>We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.
Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.
LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - Federated LLMs Fine-tuned with Adaptive Importance-Aware LoRA [24.871424801066006]
Federated fine-tuning of Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving data privacy.
We propose a novel Heterogeneous Adaptive Federated Low-Rank Adaptation (LoRA) fine-tuned LLM framework (HAFL)
Our method converges quickly with low communication size, and avoids performance degradation when distributing models to clients.
arXiv Detail & Related papers (2024-11-10T19:59:54Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Resource Management for Low-latency Cooperative Fine-tuning of Foundation Models at the Network Edge [35.40849522296486]
Large-scale foundation models (FoMos) can perform human-like intelligence.
FoMos need to be adapted to specialized downstream tasks through fine-tuning techniques.
We advocate multi-device cooperation within the device-edge cooperative fine-tuning paradigm.
arXiv Detail & Related papers (2024-07-13T12:47:14Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA) offers an efficient way to fine-tune large language models (LLMs)
In this paper, we propose a framework that adaptively retrieves and composes multiple LoRAs based on input prompts.
arXiv Detail & Related papers (2024-06-24T05:24:41Z) - Efficient Heterogeneous Large Language Model Decoding with Model-Attention Disaggregation [15.35494431928751]
Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but also introduce significant challenges in real-world serving.
We introduce model-attention disaggregation to enhance the efficiency of LLM decoding.
We develop and deploy Lamina, an LLM inference system that incorporates model-attention disaggregation in a distributed heterogeneous cluster.
arXiv Detail & Related papers (2024-05-03T02:15:15Z) - Mixture of LoRA Experts [87.50120181861362]
This paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection.
The MoLE approach achieves superior LoRA fusion performance in comparison to direct arithmetic merging.
arXiv Detail & Related papers (2024-04-21T11:59:53Z) - Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation
Models [20.707283766914017]
HetLoRA allows heterogeneous ranks across client devices and efficiently aggregates and distributes these heterogeneous LoRA modules.
HetLoRA achieves improved convergence speed and final performance compared to homogeneous LoRA.
arXiv Detail & Related papers (2024-01-12T07:52:07Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.