論文の概要: Temporal Reasoning in AI systems
- arxiv url: http://arxiv.org/abs/2502.00020v2
- Date: Wed, 12 Feb 2025 21:39:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:45:40.530736
- Title: Temporal Reasoning in AI systems
- Title(参考訳): AIシステムにおける時間推論
- Authors: Abhishek Sharma,
- Abstract要約: 本稿では,サイック・ナレッジ・ベースにおいて,頑健な時間予測に必要な知識表現と推論手法について論じる。
次に、与えられた流動を外挿するために、事実の持続性に関する知識を表す離散生存関数を使用する。
外挿された区間は、時間的制約やその他のコモンセンス知識によって切り離される。
- 参考スコア(独自算出の注目度): 2.960110343737342
- License:
- Abstract: Commonsense temporal reasoning at scale is a core problem for cognitive systems. The correct inference of the duration for which fluents hold is required by many tasks, including natural language understanding and planning. Many AI systems have limited deductive closure because they cannot extrapolate information correctly regarding existing fluents and events. In this study, we discuss the knowledge representation and reasoning schemes required for robust temporal projection in the Cyc Knowledge Base. We discuss how events can start and end risk periods for fluents. We then use discrete survival functions, which represent knowledge of the persistence of facts, to extrapolate a given fluent. The extrapolated intervals can be truncated by temporal constraints and other types of commonsense knowledge. Finally, we present the results of experiments to demonstrate that these methods obtain significant improvements in terms of Q/A performance.
- Abstract(参考訳): 広義の時間的推論は認知システムの中核的な問題である。
フロートが保持する期間の正確な推測は、自然言語の理解や計画を含む多くのタスクによって要求される。
多くのAIシステムは、既存の流動性やイベントに関する情報を正しく外挿できないため、還元的クロージャが限られている。
本研究では,Cyc Knowledge Baseにおける時間的強靭なプロジェクションに必要な知識表現と推論手法について考察する。
イベントの開始と,流動的な人たちのリスク期間の終了について論じる。
次に、与えられた流動を外挿するために、事実の持続性に関する知識を表す離散生存関数を使用する。
外挿された区間は、時間的制約やその他のコモンセンス知識によって切り離される。
最後に,これらの手法がQ/A性能において有意な改善をもたらすことを示す実験結果を示す。
関連論文リスト
- Boundless Socratic Learning with Language Games [4.349705501648028]
は、最初のデータや知識に存在しているものよりもパフォーマンスを大幅に向上させることができると論じています。
本稿では,言語ゲームの概念に基づく構築型フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-25T20:16:16Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2024-06-11T15:58:59Z) - Temporal Knowledge Question Answering via Abstract Reasoning Induction [32.08799860090592]
本研究では,Large Language Models(LLMs)における時間的知識推論の高度化という課題に対処する。
本稿では,時間的推論を知識非依存と知識に基づく2つのフェーズに分割する抽象推論誘導(ARI)フレームワークを提案する。
提案手法は,2つの時間的QAデータセットに対して29.7%と9.27%の相対的な向上を達成している。
論文 参考訳(メタデータ) (2023-11-15T17:46:39Z) - Back to the Future: Towards Explainable Temporal Reasoning with Large
Language Models [33.8108950744839]
そこで本稿では,コンテキストに基づいたイベント発生の予測を行うために,時間的推論を記述可能な最初のタスクを紹介する。
本研究では,時間的予測と説明の最先端性能を実現する方法を示す。
論文 参考訳(メタデータ) (2023-10-02T10:35:23Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
大きな言語モデル(LLM)は、時間的推論に関わる際に課題に直面します。
本研究では,時間的質問応答タスクに特化して設計された新しいフレームワークであるTempLogicを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:57:53Z) - Mitigating Temporal Misalignment by Discarding Outdated Facts [58.620269228776294]
大規模な言語モデルは、しばしば時間的ミスアライメントの下で使われ、現在に関する質問に答える。
我々は、ある事実がいつまで真実であるかを予測するタスクとして、事実期間予測を提案する。
私たちのデータとコードはhttps://github.com/mikejqzhang/mitigating_misalignment.comで公開されています。
論文 参考訳(メタデータ) (2023-05-24T07:30:08Z) - RECKONING: Reasoning through Dynamic Knowledge Encoding [51.076603338764706]
言語モデルは、文脈の一部として提供される知識について推論することで、質問に答えることができることを示す。
これらの状況では、モデルは質問に答えるために必要な知識を区別することができない。
我々は、与えられた文脈知識をモデルのパラメータに折り畳み、より堅牢に推論するようにモデルに教えることを提案する。
論文 参考訳(メタデータ) (2023-05-10T17:54:51Z) - The Life Cycle of Knowledge in Big Language Models: A Survey [39.955688635216056]
事前訓練された言語モデル(PLM)は、言語モデルによって知識を取得、維持、更新、利用する方法に大きな注目を集めている。
膨大な量の関連する研究にもかかわらず、学習、チューニング、アプリケーションプロセスを通して、言語モデル内で知識がどのように循環するかについての統一された見解はいまだに存在しない。
我々は, PLMにおける知識のライフサイクルを5つの臨界期間に分割し, 構築, 維持, 使用の際の知識の循環について検討することによって, PLMを知識ベースシステムとして再考する。
論文 参考訳(メタデータ) (2023-03-14T03:49:22Z) - Probing Across Time: What Does RoBERTa Know and When? [70.20775905353794]
言語知識は、ドメイン間で高速、安定、そして堅牢に獲得されることを示す。
事実と常識はより遅く、ドメインに敏感です。
クロスタイム探索は、これらのモデルが生み出す複雑で混ざった学習を理解するのに役立ち、必要な学習を迅速に行うためのより効率的なアプローチへと導いてくれると信じています。
論文 参考訳(メタデータ) (2021-04-16T04:26:39Z) - Temporal Reasoning on Implicit Events from Distant Supervision [91.20159064951487]
本稿では,暗黙的事象の理解度を評価する新しい時間的推論データセットを提案する。
我々は、暗黙の出来事と明示的な出来事の間の時間的関係を予測する際に、最先端のモデルが苦労していることを発見した。
本稿では,大規模テキストからの遠隔監視信号を利用して終末時刻を推定する,ニューロシンボリックな時間的推論モデルSYMTIMEを提案する。
論文 参考訳(メタデータ) (2020-10-24T03:12:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。