Leveraging Large Language Models to Enhance Machine Learning Interpretability and Predictive Performance: A Case Study on Emergency Department Returns for Mental Health Patients
- URL: http://arxiv.org/abs/2502.00025v3
- Date: Fri, 14 Feb 2025 03:10:58 GMT
- Title: Leveraging Large Language Models to Enhance Machine Learning Interpretability and Predictive Performance: A Case Study on Emergency Department Returns for Mental Health Patients
- Authors: Abdulaziz Ahmed, Mohammad Saleem, Mohammed Alzeen, Badari Birur, Rachel E Fargason, Bradley G Burk, Hannah Rose Harkins, Ahmed Alhassan, Mohammed Ali Al-Garadi,
- Abstract summary: Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days.
To assess whether integrating large language models (LLMs) with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models.
- Score: 2.3769374446083735
- License:
- Abstract: Importance: Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days. Traditional machine learning models for predicting these returns often lack interpretability for clinical use. Objective: To assess whether integrating large language models (LLMs) with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models. Methods: This retrospective cohort study analyzed 42,464 ED visits for 27,904 unique mental health patients at an academic medical center in the Deep South from January 2018 to December 2022. Main Outcomes and Measures: Two primary outcomes were evaluated: (1) 30-day ED return prediction accuracy and (2) model interpretability using a novel LLM-enhanced framework integrating SHAP (SHapley Additive exPlanations) values with clinical knowledge. Results: For chief complaint classification, LLaMA 3 (8B) with 10-shot learning outperformed traditional models (accuracy: 0.882, F1-score: 0.86). In SDoH classification, LLM-based models achieved 0.95 accuracy and 0.96 F1-score, with Alcohol, Tobacco, and Substance Abuse performing best (F1: 0.96-0.89), while Exercise and Home Environment showed lower performance (F1: 0.70-0.67). The LLM-based interpretability framework achieved 99% accuracy in translating model predictions into clinically relevant explanations. LLM-extracted features improved XGBoost AUC from 0.74 to 0.76 and AUC-PR from 0.58 to 0.61. Conclusions and Relevance: Integrating LLMs with machine learning models yielded modest but consistent accuracy gains while significantly enhancing interpretability through automated, clinically relevant explanations. This approach provides a framework for translating predictive analytics into actionable clinical insights.
Related papers
- Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation.
This study integrates structured physiological data and clinical notes with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy.
arXiv Detail & Related papers (2024-11-25T16:36:38Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.
Previous studies employing machine learning faced limitations in feature selection and model interpretability.
This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency.
arXiv Detail & Related papers (2023-08-09T07:51:40Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.