論文の概要: Towards Recommender Systems LLMs Playground (RecSysLLMsP): Exploring Polarization and Engagement in Simulated Social Networks
- arxiv url: http://arxiv.org/abs/2502.00055v1
- Date: Wed, 29 Jan 2025 14:23:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:05:36.045270
- Title: Towards Recommender Systems LLMs Playground (RecSysLLMsP): Exploring Polarization and Engagement in Simulated Social Networks
- Title(参考訳): Recommender Systems LLMs Playground (RecSysLLMsP): シミュレーションソーシャルネットワークにおけるポーラライゼーションとエンゲージメントの探求
- Authors: Ljubisa Bojic, Zorica Dodevska, Yashar Deldjoo, Nenad Pantelic,
- Abstract要約: 本稿では,Large Language Models (LLMs) を利用した新しいシミュレーションフレームワークを提案する。
説明的、静的、動的属性を持つ多様なAIエージェントを作成することで、3つのシナリオにわたって自律的な振る舞いを評価する。
本研究は, 社会的分極を緩和しつつ, ユーザの満足度を高めるためのレコメンデータシステム設計において, 慎重なバランスの必要性を強調するものである。
- 参考スコア(独自算出の注目度): 6.813586966214873
- License:
- Abstract: Given the exponential advancement in AI technologies and the potential escalation of harmful effects from recommendation systems, it is crucial to simulate and evaluate these effects early on. Doing so can help prevent possible damage to both societies and technology companies. This paper introduces the Recommender Systems LLMs Playground (RecSysLLMsP), a novel simulation framework leveraging Large Language Models (LLMs) to explore the impacts of different content recommendation setups on user engagement and polarization in social networks. By creating diverse AI agents (AgentPrompts) with descriptive, static, and dynamic attributes, we assess their autonomous behaviour across three scenarios: Plurality, Balanced, and Similarity. Our findings reveal that the Similarity Scenario, which aligns content with user preferences, maximizes engagement while potentially fostering echo chambers. Conversely, the Plurality Scenario promotes diverse interactions but produces mixed engagement results. Our study emphasizes the need for a careful balance in recommender system designs to enhance user satisfaction while mitigating societal polarization. It underscores the unique value and challenges of incorporating LLMs into simulation environments. The benefits of RecSysLLMsP lie in its potential to calculate polarization effects, which is crucial for assessing societal impacts and determining user engagement levels with diverse recommender system setups. This advantage is essential for developing and maintaining a successful business model for social media companies. However, the study's limitations revolve around accurately emulating reality. Future efforts should validate the similarity in behaviour between real humans and AgentPrompts and establish metrics for measuring polarization scores.
- Abstract(参考訳): AI技術の飛躍的な進歩とレコメンデーションシステムからの有害な影響の潜在的エスカレーションを考えると、これらの効果を早期にシミュレートし評価することが不可欠である。
そうすることで、社会とテクノロジー企業の両方が被害を受けるのを防ぐことができる。
本稿では,Large Language Models(LLMs)を利用した新しいシミュレーションフレームワークであるRecommender Systems LLMs Playground(RecSysLLMsP)を紹介する。
記述的、静的、動的属性を備えた多様なAIエージェント(AgentPrompts)を作成することで、Plurality、Ba Balanced、Simisityの3つのシナリオにわたって、自律的な振る舞いを評価します。
以上の結果から,コンテントとユーザの嗜好を一致させる類似性シナリオは,エコーチャンバーを育みながらエンゲージメントを最大化することが明らかとなった。
逆に、Plurality Scenarioは多様な相互作用を促進するが、複雑なエンゲージメントの結果を生み出す。
本研究は, 社会的分極を緩和しつつ, ユーザの満足度を高めるためのレコメンデータシステム設計において, 慎重なバランスの必要性を強調するものである。
LLMをシミュレーション環境に組み込むというユニークな価値と課題を浮き彫りにする。
RecSysLLMsPの利点は、偏光効果を計算する能力にある。これは、社会的影響を評価し、多様なレコメンダシステム設定でユーザエンゲージメントレベルを決定するために重要である。
この優位性は、ソーシャルメディア企業にとって成功したビジネスモデルの開発と維持に不可欠である。
しかし、この研究の限界は、現実を正確にエミュレートすることに集中している。
今後は、実際の人間とエージェントプロンプトの行動の類似性を検証し、偏光スコアを測定するための指標を確立する必要がある。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
本稿では,長期シナリオにおけるユーザ-リコメンダ間のインタラクションを模倣するシミュレーションフレームワークを提案する。
本稿では,ユーザの嗜好に対するアルゴリズムの影響を定量化する2つの新しい指標について紹介する。
論文 参考訳(メタデータ) (2024-09-24T21:54:22Z) - Fusing Dynamics Equation: A Social Opinions Prediction Algorithm with LLM-based Agents [6.1923703280119105]
本稿では,ソーシャルメディア利用者の意見を動的に表現するための革新的なシミュレーション手法を提案する。
FDE-LLMアルゴリズムは意見力学と流行モデルを含む。
ユーザーを意見のリーダーとフォロワーに分類する。
論文 参考訳(メタデータ) (2024-09-13T11:02:28Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - INTAGS: Interactive Agent-Guided Simulation [4.04638613278729]
マルチエージェントシステム(MAS)を含む多くのアプリケーションでは、実稼働に先立って、実験的な(Exp)自律エージェントを高忠実度シミュレータでテストすることが必須である。
本稿では,ExpエージェントとBGエージェントのライブインタラクションによって評価される実システムと合成マルチエージェントシステムとを区別する指標を提案する。
InTAGSを用いてシミュレータのキャリブレーションを行い、現状のWasserstein Generative Adversarial Networkアプローチと比較して、より現実的な市場データを生成することができることを示す。
論文 参考訳(メタデータ) (2023-09-04T19:56:18Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。