Israel-Hamas war through Telegram, Reddit and Twitter
- URL: http://arxiv.org/abs/2502.00060v1
- Date: Thu, 30 Jan 2025 08:20:26 GMT
- Title: Israel-Hamas war through Telegram, Reddit and Twitter
- Authors: Despoina Antonakaki, Sotiris Ioannidis,
- Abstract summary: The study will cover an analysis of the related discussion in relation to different participants of the conflict and sentiment represented in those discussion.
We apply a volume analysis across the three datasets, entity extraction and then proceed to BERT topic analysis.
Our findings hint at polarized narratives as the hallmark of how political factions and outsiders mold public opinion.
- Score: 9.020777839880571
- License:
- Abstract: The Israeli-Palestinian conflict started on 7 October 2023, have resulted thus far to over 48,000 people killed including more than 17,000 children with a majority from Gaza, more than 30,000 people injured, over 10,000 missing, and over 1 million people displaced, fleeing conflict zones. The infrastructure damage includes the 87\% of housing units, 80\% of public buildings and 60\% of cropland 17 out of 36 hospitals, 68\% of road networks and 87\% of school buildings damaged. This conflict has as well launched an online discussion across various social media platforms. Telegram was no exception due to its encrypted communication and highly involved audience. The current study will cover an analysis of the related discussion in relation to different participants of the conflict and sentiment represented in those discussion. To this end, we prepared a dataset of 125K messages shared on channels in Telegram spanning from 23 October 2025 until today. Additionally, we apply the same analysis in two publicly available datasets from Twitter containing 2001 tweets and from Reddit containing 2M opinions. We apply a volume analysis across the three datasets, entity extraction and then proceed to BERT topic analysis in order to extract common themes or topics. Next, we apply sentiment analysis to analyze the emotional tone of the discussions. Our findings hint at polarized narratives as the hallmark of how political factions and outsiders mold public opinion. We also analyze the sentiment-topic prevalence relationship, detailing the trends that may show manipulation and attempts of propaganda by the involved parties. This will give a better understanding of the online discourse on the Israel-Palestine conflict and contribute to the knowledge on the dynamics of social media communication during geopolitical crises.
Related papers
- Quantifying Extreme Opinions on Reddit Amidst the 2023 Israeli-Palestinian Conflict [3.2430260063115224]
This study investigates the dynamics of extreme opinions on social media during the 2023 Israeli-Palestinian conflict.
A lexicon-based, unsupervised methodology was developed to measure "extreme opinions"
The analysis identifies significant peaks in extremism scores that correspond to pivotal real-life events.
arXiv Detail & Related papers (2024-12-14T17:52:28Z) - Coordinated Activity Modulates the Behavior and Emotions of Organic
Users: A Case Study on Tweets about the Gaza Conflict [9.58546889761175]
This research delves into the interaction dynamics between coordinated (malicious) entities and organic (regular) users on Twitter amidst the Gaza conflict.
Through the analysis of approximately 3.5 million tweets from over 1.3 million users, our study uncovers that coordinated users significantly impact the information landscape.
Results highlight the critical need for vigilance and a nuanced understanding of information manipulation on social media platforms.
arXiv Detail & Related papers (2024-02-08T18:07:17Z) - IsamasRed: A Public Dataset Tracking Reddit Discussions on Israel-Hamas Conflict [13.92311040225417]
We present a meticulously compiled dataset-IsamasRed spanning from August 2023 to November 2023.
Our initial analysis on the dataset, examining topics, controversy, emotional and moral language trends over time, highlights the emotionally charged and complex nature of the discourse.
This dataset aims to enrich the understanding of online discussions, shedding light on the complex interplay between ideology, sentiment, and community engagement in digital spaces.
arXiv Detail & Related papers (2024-01-16T08:30:41Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
We first adopt a human-guided machine learning framework to develop a new dataset for hyperpartisan news title detection.
Overall the Right media tends to use proportionally more hyperpartisan titles.
We identify three major topics including foreign issues, political systems, and societal issues that are suggestive of hyperpartisanship in news titles.
arXiv Detail & Related papers (2023-01-16T05:56:58Z) - Religion and Spirituality on Social Media in the Aftermath of the Global
Pandemic [59.930429668324294]
We analyse the sudden change in religious activities twofold: we create and deliver a questionnaire, as well as analyse Twitter data.
Importantly, we also analyse the temporal variations in this process by analysing a period of 3 months: July-September 2020.
arXiv Detail & Related papers (2022-12-11T18:41:02Z) - Twitter Dataset on the Russo-Ukrainian War [68.713984286035]
We have initiated an ongoing dataset acquisition from Twitter API.
The dataset has reached the amount of 57.3 million tweets, originating from 7.7 million users.
We apply an initial volume and sentiment analysis, while the dataset can be used to further exploratory investigation towards topic analysis, hate speech, propaganda recognition, or even show potential malicious entities like botnets.
arXiv Detail & Related papers (2022-04-07T12:33:06Z) - Discourse Analysis of Covid-19 in Persian Twitter Social Networks Using
Graph Mining and Natural Language Processing [0.0]
The examined big data is five million tweets from 160,000 users of the Persian Twitter network.
The analyzed Iranian society does not consider itself responsible for the Covid-19 wicked problem.
The most active and most influential users' similarity is that political, national, and critical discourse construction is the predominant one.
arXiv Detail & Related papers (2021-09-01T10:39:20Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
An estimated 2.95 billion people in 2019 used social media worldwide.
The widespread of the Coronavirus COVID-19 resulted with a tsunami of social media.
This paper presents a large-scale study based on data mined from Twitter.
arXiv Detail & Related papers (2020-05-18T15:53:13Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.