Discourse Analysis of Covid-19 in Persian Twitter Social Networks Using
Graph Mining and Natural Language Processing
- URL: http://arxiv.org/abs/2109.00298v1
- Date: Wed, 1 Sep 2021 10:39:20 GMT
- Title: Discourse Analysis of Covid-19 in Persian Twitter Social Networks Using
Graph Mining and Natural Language Processing
- Authors: Omid Shokrollahi, Niloofar Hashemi, Mohammad Dehghani
- Abstract summary: The examined big data is five million tweets from 160,000 users of the Persian Twitter network.
The analyzed Iranian society does not consider itself responsible for the Covid-19 wicked problem.
The most active and most influential users' similarity is that political, national, and critical discourse construction is the predominant one.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the new scientific ways of understanding discourse dynamics is
analyzing the public data of social networks. This research's aim is
Post-structuralist Discourse Analysis (PDA) of Covid-19 phenomenon (inspired by
Laclau and Mouffe's Discourse Theory) by using Intelligent Data Mining for
Persian Society. The examined big data is five million tweets from 160,000
users of the Persian Twitter network to compare two discourses. Besides
analyzing the tweet texts individually, a social network graph database has
been created based on retweets relationships. We use the VoteRank algorithm to
introduce and rank people whose posts become word of mouth, provided that the
total information spreading scope is maximized over the network. These users
are also clustered according to their word usage pattern (the Gaussian Mixture
Model is used). The constructed discourse of influential spreaders is compared
to the most active users. This analysis is done based on Covid-related posts
over eight episodes. Also, by relying on the statistical content analysis and
polarity of tweet words, discourse analysis is done for the whole mentioned
subpopulations, especially for the top individuals. The most important result
of this research is that the Twitter subjects' discourse construction is
government-based rather than community-based. The analyzed Iranian society does
not consider itself responsible for the Covid-19 wicked problem, does not
believe in participation, and expects the government to solve all problems. The
most active and most influential users' similarity is that political, national,
and critical discourse construction is the predominant one. In addition to the
advantages of its research methodology, it is necessary to pay attention to the
study's limitations. Suggestion for future encounters of Iranian society with
similar crises is given.
Related papers
- Detecting Political Opinions in Tweets through Bipartite Graph Analysis:
A Skip Aggregation Graph Convolution Approach [9.350629400940493]
We focus on the 2020 US presidential election and create a large-scale dataset from Twitter.
To detect political opinions in tweets, we build a user-tweet bipartite graph based on users' posting and retweeting behaviors.
We introduce a novel skip aggregation mechanism that makes tweet nodes aggregate information from second-order neighbors.
arXiv Detail & Related papers (2023-04-22T10:38:35Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - Predicting Hate Intensity of Twitter Conversation Threads [26.190359413890537]
We propose DRAGNET++, which aims to predict the intensity of hatred that a tweet can bring in through its reply chain in the future.
It uses the semantic and propagating structure of the tweet threads to maximize the contextual information leading up to and the fall of hate intensity at each subsequent tweet.
We show that DRAGNET++ outperforms all the state-of-the-art baselines significantly.
arXiv Detail & Related papers (2022-06-16T18:51:36Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data.
Supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions.
arXiv Detail & Related papers (2021-12-08T14:12:24Z) - Extracting Feelings of People Regarding COVID-19 by Social Network
Mining [0.0]
dataset of COVID-related tweets in English language is collected.
More than two million tweets from March 23 to June 23 of 2020 are analyzed.
arXiv Detail & Related papers (2021-10-12T16:45:33Z) - A Study on Herd Behavior Using Sentiment Analysis in Online Social
Network [1.5673338088641469]
This paper represents and analyze the capacity of diverse strategies to predict critical opinions from online social networking sites.
Social media becomes a good outlet since the last decades to share the opinions globally.
This study demonstrates the evaluation of sentiment analysis techniques using social media contents.
arXiv Detail & Related papers (2021-07-25T05:22:35Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Towards A Sentiment Analyzer for Low-Resource Languages [0.0]
This research aims to analyse a sentiment of the users towards a particular trending topic that has been actively and massively discussed at that time.
We use the hashtag textit#kpujangancurang that was the trending topic during the Indonesia presidential election in 2019.
This research utilizes rapid miner tool to generate the twitter data and comparing Naive Bayes, K-Nearest Neighbor, Decision Tree, and Multi-Layer Perceptron classification methods to classify the sentiment of the twitter data.
arXiv Detail & Related papers (2020-11-12T13:50:00Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z) - Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline [47.434392695347924]
RecSys 2020 Challenge organized by ACM RecSys in partnership with Twitter using this dataset.
This paper touches on the key challenges faced by researchers and professionals striving to predict user engagements.
arXiv Detail & Related papers (2020-04-28T23:54:33Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.