A Multi-Layered Large Language Model Framework for Disease Prediction
- URL: http://arxiv.org/abs/2502.00063v1
- Date: Thu, 30 Jan 2025 18:53:50 GMT
- Title: A Multi-Layered Large Language Model Framework for Disease Prediction
- Authors: Malak Mohamed, Rokaia Emad, Ali Hamdi,
- Abstract summary: Large language models (LLMs) process complex medical data to enhance disease classification.
This study explores three Arabic medical text preprocessing techniques.
evaluating CAMeL-BERT, AraBERT, and Asafaya-BERT with LoRA.
- Score: 0.0
- License:
- Abstract: Social telehealth has revolutionized healthcare by enabling patients to share symptoms and receive medical consultations remotely. Users frequently post symptoms on social media and online health platforms, generating a vast repository of medical data that can be leveraged for disease classification and symptom severity assessment. Large language models (LLMs), such as LLAMA3, GPT-3.5 Turbo, and BERT, process complex medical data to enhance disease classification. This study explores three Arabic medical text preprocessing techniques: text summarization, text refinement, and Named Entity Recognition (NER). Evaluating CAMeL-BERT, AraBERT, and Asafaya-BERT with LoRA, the best performance was achieved using CAMeL-BERT with NER-augmented text (83% type classification, 69% severity assessment). Non-fine-tuned models performed poorly (13%-20% type classification, 40%-49% severity assessment). Integrating LLMs into social telehealth systems enhances diagnostic accuracy and treatment outcomes.
Related papers
- A Multimodal Approach to The Detection and Classification of Skin Diseases [0.5755004576310334]
Many diseases are left undiagnosed and untreated, even if the disease shows many physical symptoms on the skin.
With the rise of AI, self-diagnosis and improved disease recognition have become more promising than ever.
This study incorporates readily available and easily accessible patient information via image and text for skin disease classification.
arXiv Detail & Related papers (2024-11-21T05:27:42Z) - Enhancing Multi-Class Disease Classification: Neoplasms, Cardiovascular, Nervous System, and Digestive Disorders Using Advanced LLMs [0.0]
BioBERT, which was pre-trained on medical data, demonstrated superior performance in medical text classification.
XLNet, a custom model based on the lighter version of BERT, also proved competitive with 87.10% accuracy.
arXiv Detail & Related papers (2024-11-19T18:27:25Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - Digital Diagnostics: The Potential Of Large Language Models In Recognizing Symptoms Of Common Illnesses [0.2995925627097048]
This study evaluates each model diagnostic abilities by interpreting a user symptoms and determining diagnoses that fit well with common illnesses.
GPT-4 demonstrates higher diagnostic accuracy from its deep and complete history of training on medical data.
Gemini performs with high precision as a critical tool in disease triage, demonstrating its potential to be a reliable model.
arXiv Detail & Related papers (2024-05-09T15:12:24Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Health-LLM: Personalized Retrieval-Augmented Disease Prediction System [43.91623010448573]
We propose an innovative framework, Heath-LLM, which combines large-scale feature extraction and medical knowledge trade-off scoring.
Compared to traditional health management applications, our system has three main advantages.
arXiv Detail & Related papers (2024-02-01T16:40:32Z) - MedAlign: A Clinician-Generated Dataset for Instruction Following with
Electronic Medical Records [60.35217378132709]
Large language models (LLMs) can follow natural language instructions with human-level fluency.
evaluating LLMs on realistic text generation tasks for healthcare remains challenging.
We introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data.
arXiv Detail & Related papers (2023-08-27T12:24:39Z) - KNSE: A Knowledge-aware Natural Language Inference Framework for
Dialogue Symptom Status Recognition [69.78432481474572]
We propose a novel framework called KNSE for symptom status recognition (SSR)
For each mentioned symptom in a dialogue window, we first generate knowledge about the symptom and hypothesis about status of the symptom, to form a (premise, knowledge, hypothesis) triplet.
The BERT model is then used to encode the triplet, which is further processed by modules including utterance aggregation, self-attention, cross-attention, and GRU to predict the symptom status.
arXiv Detail & Related papers (2023-05-26T11:23:26Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Word-level Text Highlighting of Medical Texts forTelehealth Services [0.0]
This paper aims to show how different text highlighting techniques can capture relevant medical context.
Three different word-level text highlighting methodologies are implemented and evaluated.
The results of our experiments show that the neural network approach is successful in highlighting medically-relevant terms.
arXiv Detail & Related papers (2021-05-21T15:13:54Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.