Enhancing Multi-Class Disease Classification: Neoplasms, Cardiovascular, Nervous System, and Digestive Disorders Using Advanced LLMs
- URL: http://arxiv.org/abs/2411.12712v1
- Date: Tue, 19 Nov 2024 18:27:25 GMT
- Title: Enhancing Multi-Class Disease Classification: Neoplasms, Cardiovascular, Nervous System, and Digestive Disorders Using Advanced LLMs
- Authors: Ahmed Akib Jawad Karim, Muhammad Zawad Mahmud, Samiha Islam, Aznur Azam,
- Abstract summary: BioBERT, which was pre-trained on medical data, demonstrated superior performance in medical text classification.
XLNet, a custom model based on the lighter version of BERT, also proved competitive with 87.10% accuracy.
- Score: 0.0
- License:
- Abstract: In this research, we explored the improvement in terms of multi-class disease classification via pre-trained language models over Medical-Abstracts-TC-Corpus that spans five medical conditions. We excluded non-cancer conditions and examined four specific diseases. We assessed four LLMs, BioBERT, XLNet, and BERT, as well as a novel base model (Last-BERT). BioBERT, which was pre-trained on medical data, demonstrated superior performance in medical text classification (97% accuracy). Surprisingly, XLNet followed closely (96% accuracy), demonstrating its generalizability across domains even though it was not pre-trained on medical data. LastBERT, a custom model based on the lighter version of BERT, also proved competitive with 87.10% accuracy (just under BERT's 89.33%). Our findings confirm the importance of specialized models such as BioBERT and also support impressions around more general solutions like XLNet and well-tuned transformer architectures with fewer parameters (in this case, LastBERT) in medical domain tasks.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Improving Extraction of Clinical Event Contextual Properties from Electronic Health Records: A Comparative Study [2.0884301753594334]
This study performs a comparative analysis of various natural language models for medical text classification.
BERT outperforms Bi-LSTM models by up to 28% and the baseline BERT model by up to 16% for recall of the minority classes.
arXiv Detail & Related papers (2024-08-30T10:28:49Z) - Utilizing Large Language Models to Generate Synthetic Data to Increase the Performance of BERT-Based Neural Networks [0.7071166713283337]
We created datasets large enough to train machine learning models.
Our goal is to label behaviors corresponding to autism criteria.
Augmenting data increased recall by 13% but decreased precision by 16%.
arXiv Detail & Related papers (2024-05-08T03:18:12Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Small Language Models Learn Enhanced Reasoning Skills from Medical Textbooks [17.40940406100025]
We introduce Meerkat, a new family of medical AI systems ranging from 7 to 70 billion parameters.
Our systems achieved remarkable accuracy across six medical benchmarks.
Meerkat-70B correctly diagnosed 21 out of 38 complex clinical cases, outperforming humans' 13.8.
arXiv Detail & Related papers (2024-03-30T14:09:00Z) - BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text [82.7001841679981]
BioMedLM is a 2.7 billion parameter GPT-style autoregressive model trained exclusively on PubMed abstracts and full articles.
When fine-tuned, BioMedLM can produce strong multiple-choice biomedical question-answering results competitive with larger models.
BioMedLM can also be fine-tuned to produce useful answers to patient questions on medical topics.
arXiv Detail & Related papers (2024-03-27T10:18:21Z) - Large Language Multimodal Models for 5-Year Chronic Disease Cohort Prediction Using EHR Data [15.474201222908107]
Chronic diseases such as diabetes are the leading causes of morbidity and mortality worldwide.
We proposed a novel Large Language Multimodal Models (LLMMs) framework incorporating multimodal data for the prediction of chronic disease risk.
Our method combined a text embedding encoder and multi-head attention layer to learn laboratory test values, utilizing a deep neural network (DNN) module to merge blood features with chronic disease semantics into a latent space.
arXiv Detail & Related papers (2024-03-02T22:33:17Z) - BioGPT: Generative Pre-trained Transformer for Biomedical Text
Generation and Mining [140.61707108174247]
We propose BioGPT, a domain-specific generative Transformer language model pre-trained on large scale biomedical literature.
We get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks respectively, and 78.2% accuracy on PubMedQA.
arXiv Detail & Related papers (2022-10-19T07:17:39Z) - Fine-Tuning Large Neural Language Models for Biomedical Natural Language
Processing [55.52858954615655]
We conduct a systematic study on fine-tuning stability in biomedical NLP.
We show that finetuning performance may be sensitive to pretraining settings, especially in low-resource domains.
We show that these techniques can substantially improve fine-tuning performance for lowresource biomedical NLP applications.
arXiv Detail & Related papers (2021-12-15T04:20:35Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.