論文の概要: Influence of color correction on pathology detection in Capsule Endoscopy
- arxiv url: http://arxiv.org/abs/2502.00076v1
- Date: Fri, 31 Jan 2025 10:05:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:05:26.062845
- Title: Influence of color correction on pathology detection in Capsule Endoscopy
- Title(参考訳): カプセル内視鏡の病理診断における色補正の影響
- Authors: Bidossessi Emmanuel Agossou, Marius Pedersen, Kiran Raja, Anuja Vats, Pål Anders Floor,
- Abstract要約: 網膜ネットとYOLOv5の2つの顕著な物体検出モデルを用いて,色補正が病理診断に与える影響を評価する。
その結果、色補正により、モデルがより大きな境界ボックスと、地上の真理アノテーションとの大きな交差点領域を生成することが明らかとなった。
しかし、これらの効果は、F1スコア、IoU、AP50などのパフォーマンス指標の一貫性のある改善にはならない。
- 参考スコア(独自算出の注目度): 1.1487710376791014
- License:
- Abstract: Pathology detection in Wireless Capsule Endoscopy (WCE) using deep learning has been explored in the recent past. However, deep learning models can be influenced by the color quality of the dataset used to train them, impacting detection, segmentation and classification tasks. In this work, we evaluate the impact of color correction on pathology detection using two prominent object detection models: Retinanet and YOLOv5. We first generate two color corrected versions of a popular WCE dataset (i.e., SEE-AI dataset) using two different color correction functions. We then evaluate the performance of the Retinanet and YOLOv5 on the original and color corrected versions of the dataset. The results reveal that color correction makes the models generate larger bounding boxes and larger intersection areas with the ground truth annotations. Furthermore, color correction leads to an increased number of false positives for certain pathologies. However, these effects do not translate into a consistent improvement in performance metrics such as F1-scores, IoU, and AP50. The code is available at https://github.com/agossouema2011/WCE2024. Keywords: Wireless Capsule Endoscopy, Color correction, Retinanet, YOLOv5, Detection
- Abstract(参考訳): 近年,深層学習を用いたワイヤレスカプセル内視鏡(WCE)の病理診断が研究されている。
しかし、ディープラーニングモデルは、トレーニングに使用するデータセットの色質、検出、セグメンテーション、分類タスクに影響を受けます。
本研究では,2つの顕著な物体検出モデルであるRetinanetとYOLOv5を用いて,色補正が病理診断に与える影響を評価する。
まず、2つの異なる色補正関数を用いて、人気のあるWCEデータセット(すなわち、SEE-AIデータセット)の2つの色補正バージョンを生成する。
次に、データセットの原色と色を補正したバージョンに対して、RetinanetとYOLOv5の性能を評価する。
その結果、色補正により、モデルがより大きな境界ボックスと、地上の真理アノテーションとの大きな交差点領域を生成することが明らかとなった。
さらに、色補正は特定の病態に対する偽陽性の増加につながる。
しかし、これらの効果は、F1スコア、IoU、AP50などのパフォーマンス指標の一貫性のある改善にはならない。
コードはhttps://github.com/agossouema 2011/WCE2024で公開されている。
キーワード:ワイヤレスカプセル内視鏡、色補正、網膜ネット、YOLOv5、検出
関連論文リスト
- NCT-CRC-HE: Not All Histopathological Datasets Are Equally Useful [15.10324445908774]
本稿では,NCT-CRC-HE-100Kの大腸癌データセットの解析を行った。
このデータセットと得られた結果の両方が、データ固有のバイアスの影響を受けている可能性がある。
画像あたりの3つの特徴しか使用していない最も単純なモデルでさえ、この9クラスデータセットで50%以上の精度を示すことができる。
論文 参考訳(メタデータ) (2024-09-17T20:36:03Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - Pre-Training LiDAR-Based 3D Object Detectors Through Colorization [65.03659880456048]
我々は,データとラベルのギャップを埋めるために,革新的な事前学習手法であるグラウンドドポイントカラー化(GPC)を導入する。
GPCは、LiDAR点雲を色付けし、価値あるセマンティック・キューを装備するモデルを教えている。
KITTIとデータセットの実験結果は、GPCの顕著な効果を示している。
論文 参考訳(メタデータ) (2023-10-23T06:00:24Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
ドメインギャップは、異なるフォアグラウンド(核)-バックグラウンド比によっても引き起こされる可能性があると我々は主張する。
まず、異なる領域間の劇的な画像色変化を緩和する再カラー化手法を提案する。
次に,前景-背景比の変動に頑健な新しいインスタンス正規化手法を提案する。
論文 参考訳(メタデータ) (2023-09-01T01:01:13Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - Impact of Colour Variation on Robustness of Deep Neural Networks [0.0]
ディープニューラルネットワーク(DNN)は、画像分類、セグメンテーション、オブジェクト検出といったコンピュータビジョンアプリケーションの最先端のパフォーマンスを示している。
最近の進歩は、入力データ、すなわち敵攻撃における手動のデジタル摂動に対する脆弱性を示している。
本研究では,イメージネットのサブセットにRGB色を27種類の組み合わせで変形させることにより,色差データセットを提案する。
論文 参考訳(メタデータ) (2022-09-02T08:16:04Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
画像のリカラー化は、画像の色値を操作して新しいスタイルを与える、新たな編集技術である。
本稿では,空間相関の観点から,従来型と深層学習による再色検出の汎用的検出能力を示す解を探索する。
提案手法は,複数のベンチマークデータセット上での最先端検出精度を実現し,未知の種類の再色法を適切に一般化する。
論文 参考訳(メタデータ) (2022-04-23T01:54:06Z) - H&E-adversarial network: a convolutional neural network to learn
stain-invariant features through Hematoxylin & Eosin regression [1.7371375427784381]
本稿では,様々な色の変化を含むデータに基づいて,畳み込みニューラルネットワーク(CNN)を学習する新しい手法を提案する。
H&E-adversarial CNNと呼ばれるこの手法は、トレーニング中にH&Eマトリックス情報を利用して、染色不変の特徴を学習する。
論文 参考訳(メタデータ) (2022-01-17T10:34:23Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
近年の進歩により、畳み込みニューラルネットワーク(CNN)アーキテクチャは乳がん検出のためのコンピュータ支援診断(CAD)システムの設計に利用できることが示されている。
乳腺病理像の2値分類のためのCNNモデルについて検討した。
我々は,200倍,400倍に拡大した病理像に対して,トレーニング済みのCNNネットワークを利用可能なBreaKHisデータセットで検証した。
論文 参考訳(メタデータ) (2022-01-04T03:09:40Z) - Robust Retinal Vessel Segmentation from a Data Augmentation Perspective [14.768009562830004]
本稿では,チャネルワイドなガンマ補正とチャネルワイドなランダムな血管拡張という2つの新しいデータ拡張モジュールを提案する。
これら2つのモジュールを逐次適用することによって生成された追加のトレーニングサンプルによって、モデルはより不変かつ識別的な特徴を学ぶことができる。
実世界のデータセットと合成データセットの両方の実験結果から,従来の畳み込みニューラルネットワークアーキテクチャの性能と堅牢性の向上が実証された。
論文 参考訳(メタデータ) (2020-07-31T07:37:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。