Ensembles of Low-Rank Expert Adapters
- URL: http://arxiv.org/abs/2502.00089v1
- Date: Fri, 31 Jan 2025 18:07:21 GMT
- Title: Ensembles of Low-Rank Expert Adapters
- Authors: Yinghao Li, Vianne Gao, Chao Zhang, MohamadAli Torkamani,
- Abstract summary: We propose the Ensembles of Low-Rank Expert Adapters (ELREA) framework to improve the model's capability to handle diverse tasks.
ELREA clusters the training instructions based on their gradient directions, representing different areas of expertise.
During inference, ELREA combines predictions from the most relevant expert adapters based on the input data's gradient similarity to the training clusters.
- Score: 9.599957499802446
- License:
- Abstract: The training and fine-tuning of large language models (LLMs) often involve diverse textual data from multiple sources, which poses challenges due to conflicting gradient directions, hindering optimization and specialization. These challenges can undermine model generalization across tasks, resulting in reduced downstream performance. Recent research suggests that fine-tuning LLMs on carefully selected, task-specific subsets of data can match or even surpass the performance of using the entire dataset. Building on these insights, we propose the Ensembles of Low-Rank Expert Adapters (ELREA) framework to improve the model's capability to handle diverse tasks. ELREA clusters the training instructions based on their gradient directions, representing different areas of expertise and thereby reducing conflicts during optimization. Expert adapters are then trained on these clusters, utilizing the low-rank adaptation (LoRA) technique to ensure training efficiency and model scalability. During inference, ELREA combines predictions from the most relevant expert adapters based on the input data's gradient similarity to the training clusters, ensuring optimal adapter selection for each task. Experiments show that our method outperforms baseline LoRA adapters trained on the full dataset and other ensemble approaches with similar training and inference complexity across a range of domain-specific tasks.
Related papers
- Aligning Instruction Tuning with Pre-training [81.4748965653345]
We propose Aligning Instruction Tuning with Pre-training (AITP) to align instruction tuning with pre-training distributions.
We show consistent performance improvements with AITP on three fully open large language models (LLMs) across eight benchmarks.
arXiv Detail & Related papers (2025-01-16T08:27:40Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
We use a novel synthetic data generation pipeline to generate 48,000 instruction unique-following prompts.
With our synthetic prompts, we use two preference dataset curation methods - rejection sampling (RS) and Monte Carlo Tree Search (MCTS)
Experiments reveal that shared prefixes in preference pairs, as generated by MCTS, provide marginal but consistent improvements.
High-contrast preference pairs generally outperform low-contrast pairs; however, combining both often yields the best performance.
arXiv Detail & Related papers (2024-12-18T15:38:39Z) - ROSE: A Reward-Oriented Data Selection Framework for LLM Task-Specific Instruction Tuning [29.001249598245]
We introduce Reward-Oriented inStruction data sElection to optimize data selection for task-specific instruction tuning.
ROSE adapts an influence formulation to approximate the influence of training data points relative to a few-shot preference validation set to select the most task-related training data points.
arXiv Detail & Related papers (2024-12-01T01:01:09Z) - Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$ is a new multi-way and adaptive data selection approach for Lifelong Instruction Tuning.
We construct pseudo-skill clusters by grouping gradient-based sample vectors.
We select the best-performing data selector for each skill cluster from a pool of selector experts.
arXiv Detail & Related papers (2024-10-14T15:48:09Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - An Optimization-Based Meta-Learning Model for MRI Reconstruction with
Diverse Dataset [4.9259403018534496]
We develop a generalizable MRI reconstruction model in the meta-learning framework.
The proposed network learns regularization function in a learner adaptional model.
We test the result of quick training on the unseen tasks after meta-training and in the saving half of the time.
arXiv Detail & Related papers (2021-10-02T03:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.