論文の概要: Counting and Reasoning with Plans
- arxiv url: http://arxiv.org/abs/2502.00145v1
- Date: Fri, 31 Jan 2025 20:03:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:00:00.568575
- Title: Counting and Reasoning with Plans
- Title(参考訳): 計画の数え方と推論
- Authors: David Speck, Markus Hecher, Daniel Gnad, Johannes K. Fichte, Augusto B. Corrêa,
- Abstract要約: 本研究は,計画空間の定量的,定性的推論のための最初の研究である。
理論的には、その複雑さについて研究し、リッチな推論モードが生まれる。
そこで我々は,計画課題を命題式に変換し,異なる計画を立てるために知識コンパイルを利用する。
- 参考スコア(独自算出の注目度): 19.223883847258158
- License:
- Abstract: Classical planning asks for a sequence of operators reaching a given goal. While the most common case is to compute a plan, many scenarios require more than that. However, quantitative reasoning on the plan space remains mostly unexplored. A fundamental problem is to count plans, which relates to the conditional probability on the plan space. Indeed, qualitative and quantitative approaches are well-established in various other areas of automated reasoning. We present the first study to quantitative and qualitative reasoning on the plan space. In particular, we focus on polynomially bounded plans. On the theoretical side, we study its complexity, which gives rise to rich reasoning modes. Since counting is hard in general, we introduce the easier notion of facets, which enables understanding the significance of operators. On the practical side, we implement quantitative reasoning for planning. Thereby, we transform a planning task into a propositional formula and use knowledge compilation to count different plans. This framework scales well to large plan spaces, while enabling rich reasoning capabilities such as learning pruning functions and explainable planning.
- Abstract(参考訳): 古典的な計画では、与えられた目標に達する一連の演算子を要求する。
最も一般的なケースは計画を計算することですが、多くのシナリオはそれ以上のものを必要とします。
しかし、計画空間に関する定量的な推論はほとんど未解明のままである。
基本的な問題は計画の数を数えることであり、これは計画空間の条件付き確率に関係している。
実際、定性的かつ定量的なアプローチは、自動化推論の他の様々な分野において確立されている。
本研究は,計画空間の定量的,定性的推論のための最初の研究である。
特に、多項式有界計画に着目する。
理論的には、その複雑さについて研究し、リッチな推論モードが生まれる。
カウントは一般に難しいので、演算子の意義を理解するためのファセットの概念を導入します。
実践面では,計画のための定量的推論を実装している。
そこで我々は,計画課題を命題式に変換し,異なる計画を立てるために知識コンパイルを利用する。
このフレームワークは、プルーニング関数の学習や説明可能なプランニングといったリッチな推論機能を実現しつつ、大きな計画空間にうまくスケールする。
関連論文リスト
- Introduction to AI Planning [0.0]
注記は州モデルの導入から始まり、古典的な計画の探求に移る。
最も広範なセクションは階層的タスクネットワーク(HTN)計画に特化している。
講演ノートは、計画ドメイン定義(PDDL)言語に関するボーナス章で終わる。
論文 参考訳(メタデータ) (2024-12-16T10:38:04Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
従来のルールベースプランナとLCMベースのプランナを併用した,新しいハイブリッドプランナを開発した。
当社のアプローチでは,既存のプランナが苦労する複雑なシナリオをナビゲートし,合理的なアウトプットを生成すると同時に,ルールベースのアプローチと連携して作業する。
論文 参考訳(メタデータ) (2023-12-30T02:53:45Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Symbolic Search for Optimal Planning with Expressive Extensions [4.36572039512405]
計画問題のいくつかの性質は、それらを捕捉しモデル化するために標準的な古典的計画形式を表現的に拡張する必要がある。
公理による計画、国家依存の行動コストによる計画、過剰加入計画、トップk計画について検討する。
論文 参考訳(メタデータ) (2022-04-01T08:41:06Z) - Robust Hierarchical Planning with Policy Delegation [6.1678491628787455]
本稿では,デリゲートの原理に基づく階層計画のための新しいフレームワークとアルゴリズムを提案する。
このプランニング手法は、様々な領域における古典的なプランニングと強化学習技術に対して、実験的に非常に競争力があることを示す。
論文 参考訳(メタデータ) (2020-10-25T04:36:20Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
現実の計画問題は、数百から数千ものオブジェクトを巻き込むことが多い。
単一推論パスにおけるオブジェクトの重要性を予測するためのグラフニューラルネットワークアーキテクチャを提案する。
提案手法では,プランナと遷移モデルをブラックボックスとして扱い,既製のプランナで使用することができる。
論文 参考訳(メタデータ) (2020-09-11T18:55:08Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
未来に予測し、計画する能力は、世界で行動するエージェントにとって基本である。
視覚的予測と計画のための現在の学習手法は、長期的タスクでは失敗する。
本稿では,これらの制約を克服可能な視覚的予測と計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-23T17:58:56Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
暗黙的な逐次計画の仮定に代わるものを検討する。
本稿では,最適計画の近似を行うため,Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS)を提案する。
計画順序に対するこのアルゴリズム的柔軟性は,グリッドワールドにおけるナビゲーションタスクの改善に繋がることを示す。
論文 参考訳(メタデータ) (2020-04-23T18:08:58Z) - The Efficiency of Human Cognition Reflects Planned Information
Processing [40.51474966524166]
タスク全体の構造の関数として、人々がどのように計画し、メタプランを行うべきかを予測します。
人々の反応時間は、情報処理の計画的な利用を反映している。
計画計画のこの定式化は、人間と機械の両方における階層的計画、状態抽象化、認知制御の機能に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2020-02-13T20:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。