論文の概要: Improving Quality Control Of MRI Images Using Synthetic Motion Data
- arxiv url: http://arxiv.org/abs/2502.00160v2
- Date: Thu, 13 Feb 2025 20:12:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:44:38.752292
- Title: Improving Quality Control Of MRI Images Using Synthetic Motion Data
- Title(参考訳): 合成運動データを用いたMRI画像の品質制御の改善
- Authors: Charles Bricout, Kang Ik K. Cho, Michael Harms, Ofer Pasternak, Carrie E. Bearden, Patrick D. McGorry, Rene S. Kahn, John Kane, Barnaby Nelson, Scott W. Woods, Martha E. Shenton, Sylvain Bouix, Samira Ebrahimi Kahou,
- Abstract要約: 本稿では,QC分類にトランスファー学習を適用する前に,合成された動作成果物のモデルを事前学習する手法を提案する。
この手法は、品質の悪いスキャンの精度を向上するだけでなく、トレーニング時間やリソース要件も低減する。
- 参考スコア(独自算出の注目度): 2.8225380435623606
- License:
- Abstract: MRI quality control (QC) is challenging due to unbalanced and limited datasets, as well as subjective scoring, which hinder the development of reliable automated QC systems. To address these issues, we introduce an approach that pretrains a model on synthetically generated motion artifacts before applying transfer learning for QC classification. This method not only improves the accuracy in identifying poor-quality scans but also reduces training time and resource requirements compared to training from scratch. By leveraging synthetic data, we provide a more robust and resource-efficient solution for QC automation in MRI, paving the way for broader adoption in diverse research settings.
- Abstract(参考訳): MRI品質制御(QC)は、不均衡で限られたデータセットと、信頼性の高い自動QCシステムの開発を妨げる主観的スコアリングによって困難である。
これらの問題に対処するために、QC分類に転写学習を適用する前に、合成された動きアーティファクトのモデルを事前訓練するアプローチを導入する。
この方法は、品質の悪いスキャンの精度を向上するだけでなく、スクラッチからトレーニングするよりもトレーニング時間やリソースの要求を低減させる。
合成データを活用することで、MRIにおけるQC自動化のためのより堅牢でリソース効率のよいソリューションが提供され、多様な研究環境において広く採用される道が開かれた。
関連論文リスト
- Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
本稿では,Gdient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)を紹介する。
GRMP-IQAはMeta-Prompt事前学習モジュールとQuality-Aware Gradient Regularizationの2つの主要なモジュールから構成されている。
5つの標準BIQAデータセットの実験は、限られたデータ設定下での最先端BIQA手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-09T07:26:21Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
Q-Groundは、大規模な視覚的品質グラウンドに取り組むための最初のフレームワークである。
Q-Groundは、大規模なマルチモダリティモデルと詳細な視覚的品質分析を組み合わせる。
コントリビューションの中心は、QGround-100Kデータセットの導入です。
論文 参考訳(メタデータ) (2024-07-24T06:42:46Z) - Human-in-the-loop Reinforcement Learning for Data Quality Monitoring in Particle Physics Experiments [0.0]
本稿では,データ品質モニタリングプロセスを自動化するために,人間によるループ強化学習を適用するための概念実証を提案する。
人間の分類におけるランダムな非バイアスノイズが低減され,ベースラインの精度が向上することを示す。
論文 参考訳(メタデータ) (2024-05-24T12:52:46Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
本稿では,Deep Q-Networks (DQN) を用いた強化学習を分類タスクに活用するフレームワークを提案する。
本稿では,OVR(One-Versus-The-Rest)方式で,マルチクラス運動画像(MI)分類のための前処理手法を提案する。
DQNと1D-CNN-LSTMアーキテクチャの統合は意思決定プロセスをリアルタイムで最適化する。
論文 参考訳(メタデータ) (2024-02-09T02:03:13Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
画像品質評価(IQA)は放射線線量最適化と新しい医用イメージング技術開発において重要な役割を担っている。
最近の深層学習に基づくアプローチは、強力なモデリング能力と医療IQAの可能性を示している。
本稿では,出力分布を制約して品質スコアを予測するため,マルチスケール分布回帰手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T09:33:33Z) - Quality In / Quality Out: Data quality more relevant than model choice in anomaly detection with the UGR'16 [0.29998889086656577]
ベンチマークデータセットの比較的小さな変更は、考慮された特定のML手法よりも、モデルパフォーマンスに著しく影響することを示します。
また、不正確なラベル付けの結果、測定されたモデル性能が不確かであることも示す。
論文 参考訳(メタデータ) (2023-05-31T12:03:12Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
視覚的画像品質評価(BIQA)のための簡易かつ効果的な連続学習法を提案する。
このアプローチの重要なステップは、トレーニング済みのディープニューラルネットワーク(DNN)のすべての畳み込みフィルタを凍結して、安定性を明示的に保証することです。
我々は、各新しいIQAデータセット(タスク)に予測ヘッドを割り当て、対応する正規化パラメータをロードして品質スコアを生成する。
最終的な品質推定は、軽量な$K$-meansゲーティング機構で、すべての頭からの予測の重み付け総和によって計算される。
論文 参考訳(メタデータ) (2021-07-28T15:21:01Z) - A Modulation Layer to Increase Neural Network Robustness Against Data
Quality Issues [22.62510395932645]
データ不足と品質は機械学習における一般的な問題であり、特に医療などの高度なアプリケーションにおいて問題となる。
本稿では、低品質データと欠落データの影響を軽減するために、ニューラルネットワークの新たな修正を提案する。
この結果から, 情報品質の低減を全接続層で明示的に考慮することにより, リアルタイムアプリケーションへの人工知能システムの展開が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-19T01:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。