Designing Scheduling for Diffusion Models via Spectral Analysis
- URL: http://arxiv.org/abs/2502.00180v1
- Date: Fri, 31 Jan 2025 21:50:31 GMT
- Title: Designing Scheduling for Diffusion Models via Spectral Analysis
- Authors: Roi Benita, Michael Elad, Joseph Keshet,
- Abstract summary: Diffusion models (DMs) have emerged as powerful tools for modeling complex data distributions.
We offer a novel analysis of the DM's inference process, introducing a comprehensive frequency response perspective.
We demonstrate how the proposed analysis can be leveraged for optimizing the noise schedule.
- Score: 23.105365495914644
- License:
- Abstract: Diffusion models (DMs) have emerged as powerful tools for modeling complex data distributions and generating realistic new samples. Over the years, advanced architectures and sampling methods have been developed to make these models practically usable. However, certain synthesis process decisions still rely on heuristics without a solid theoretical foundation. In our work, we offer a novel analysis of the DM's inference process, introducing a comprehensive frequency response perspective. Specifically, by relying on Gaussianity and shift-invariance assumptions, we present the inference process as a closed-form spectral transfer function, capturing how the generated signal evolves in response to the initial noise. We demonstrate how the proposed analysis can be leveraged for optimizing the noise schedule, ensuring the best alignment with the original dataset's characteristics. Our results lead to scheduling curves that are dependent on the frequency content of the data, offering a theoretical justification for some of the heuristics taken by practitioners.
Related papers
- Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
We propose a generalized diffusion model that naturally incorporates additional noise within a rigorous probabilistic framework.
We derive a loss function based on the evidence lower bound, establishing its theoretical equivalence to offset noise with certain adjustments.
Experiments on synthetic datasets demonstrate that our model effectively addresses brightness-related challenges and outperforms conventional methods in high-dimensional scenarios.
arXiv Detail & Related papers (2024-12-04T08:57:03Z) - Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
We introduce a unified convergence analysis framework for deterministic samplers.
Our framework achieves iteration complexity of $tilde O(d2/epsilon)$.
We also provide a detailed analysis of Denoising Implicit Diffusion Models (DDIM)-type samplers.
arXiv Detail & Related papers (2024-10-18T07:37:36Z) - Diffusion Spectral Representation for Reinforcement Learning [17.701625371409644]
We propose to leverage the flexibility of diffusion models for reinforcement learning from a representation learning perspective.
By exploiting the connection between diffusion models and energy-based models, we develop Diffusion Spectral Representation (Diff-SR)
We show how Diff-SR facilitates efficient policy optimization and practical algorithms while explicitly bypassing the difficulty and inference cost of sampling from the diffusion model.
arXiv Detail & Related papers (2024-06-23T14:24:14Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Robust Estimation of Causal Heteroscedastic Noise Models [7.568978862189266]
Student's $t$-distribution is known for its robustness in accounting for sampling variability with smaller sample sizes and extreme values without significantly altering the overall distribution shape.
Our empirical evaluations demonstrate that our estimators are more robust and achieve better overall performance across synthetic and real benchmarks.
arXiv Detail & Related papers (2023-12-15T02:26:35Z) - Compositional Abilities Emerge Multiplicatively: Exploring Diffusion
Models on a Synthetic Task [20.749514363389878]
We study compositional generalization in conditional diffusion models in a synthetic setting.
We find that the order in which the ability to generate samples emerges is governed by the structure of the underlying data-generating process.
Our study lays a foundation for understanding capabilities and compositionality in generative models from a data-centric perspective.
arXiv Detail & Related papers (2023-10-13T18:00:59Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.