U-Turn Diffusion
- URL: http://arxiv.org/abs/2308.07421v3
- Date: Wed, 25 Dec 2024 18:35:24 GMT
- Title: U-Turn Diffusion
- Authors: Hamidreza Behjoo, Michael Chertkov,
- Abstract summary: We focus on how GT sample information is encoded in the Score Function (SF)<n>We propose U-Turn diffusion, an augmentation of a pre-trained diffusion model.<n>Experiments on the class-conditioned SF of the ImageNet dataset reveal a critical Memorization Time $ T_m.
- Score: 0.4527270266697462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate diffusion models generating synthetic samples from the probability distribution represented by the Ground Truth (GT) samples. We focus on how GT sample information is encoded in the Score Function (SF), computed (not simulated) from the Wiener-Ito (WI) linear forward process in the artifical time $t\in [0\to \infty]$, and then used as a nonlinear drift in the simulated WI reverse process with $t\in [\infty\to 0]$. We propose U-Turn diffusion, an augmentation of a pre-trained diffusion model, which shortens the forward and reverse processes to $t\in [0\to T_u]$ and $t\in [T_u\to 0]$. The U-Turn reverse process is initialized at $T_u$ with a sample from the probability distribution of the forward process (initialized at $t=0$ with a GT sample) ensuring a detailed balance relation between the shorten forward and reverse processes. Our experiments on the class-conditioned SF of the ImageNet dataset and the multi-class, single SF of the CIFAR-10 dataset reveal a critical Memorization Time $ T_m $, beyond which generated samples diverge from the GT sample used to initialize the U-Turn scheme, and a Speciation Time $ T_s $, where for $ T_u > T_s > T_m $, samples begin representing different classes. We further examine the role of SF non-linearity through a Gaussian Test, comparing empirical and Gaussian-approximated U-Turn auto-correlation functions, and showing that the SF becomes effectively affine for $ t > T_s $, and approximately affine for $t\in [T_m,T_s]$.
Related papers
- Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
We propose amortize the cost of sampling from a posterior distribution of the form $p(mathbfxmidmathbfy) propto p_theta(mathbfx)$.
For many models and constraints of interest, the posterior in the noise space is smoother than the posterior in the data space, making it more amenable to such amortized inference.
arXiv Detail & Related papers (2025-02-10T19:49:54Z) - Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements [45.70011319850862]
Diffusion models have emerged as a powerful foundation model for visual generation.
Current posterior sampling based methods take the measurement into the posterior sampling to infer the distribution of the target data.
We show that high-frequency information can be prematurely introduced during the early stages, which could induce larger posterior estimate errors.
We propose a novel diffusion posterior sampling method DPS-CM, which incorporates a Crafted Measurement.
arXiv Detail & Related papers (2024-11-15T00:06:57Z) - IT$^3$: Idempotent Test-Time Training [95.78053599609044]
This paper introduces Idempotent Test-Time Training (IT$3$), a novel approach to addressing the challenge of distribution shift.
IT$3$ is based on the universal property of idempotence.
We demonstrate the versatility of our approach across various tasks, including corrupted image classification.
arXiv Detail & Related papers (2024-10-05T15:39:51Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
arXiv Detail & Related papers (2024-08-05T09:02:24Z) - Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
Diffusion models rely on the current sample to denoise the next one, possibly resulting in denoising instability.
In this paper, we reinterpret the iterative denoising process as model optimization and leverage a moving average mechanism to ensemble all the prior samples.
We name the complete approach "Moving Average Sampling in Frequency domain (MASF)"
arXiv Detail & Related papers (2024-03-26T16:57:55Z) - Consistency Model is an Effective Posterior Sample Approximation for Diffusion Inverse Solvers [28.678613691787096]
Previous approximations rely on the posterior means, which may not lie in the support of the image distribution.
We introduce a novel approach for posterior approximation that guarantees to generate valid samples within the support of the image distribution.
arXiv Detail & Related papers (2024-02-09T02:23:47Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Model-adapted Fourier sampling for generative compressed sensing [7.130302992490975]
We study generative compressed sensing when the measurement matrix is randomly subsampled from a unitary matrix.
We construct a model-adapted sampling strategy with an improved sample complexity of $textitO(kd| boldsymbolalpha|_22)$ measurements.
arXiv Detail & Related papers (2023-10-08T03:13:16Z) - Simulation-free Schr\"odinger bridges via score and flow matching [89.4231207928885]
We present simulation-free score and flow matching ([SF]$2$M)
Our method generalizes both the score-matching loss used in the training of diffusion models and the recently proposed flow matching loss used in the training of continuous flows.
Notably, [SF]$2$M is the first method to accurately model cell dynamics in high dimensions and can recover known gene regulatory networks simulated data.
arXiv Detail & Related papers (2023-07-07T15:42:35Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Interpreting and Improving Diffusion Models from an Optimization Perspective [4.5993996573872185]
We use this observation to interpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function.
We propose a new gradient-estimation sampler, generalizing DDIM using insights from our theoretical results.
arXiv Detail & Related papers (2023-06-08T00:56:33Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
We develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process.
As an example, we introduce Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise.
arXiv Detail & Related papers (2023-05-18T16:24:12Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling.
We show that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current gradient.
arXiv Detail & Related papers (2023-03-06T18:59:19Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
Diffusion models have a critical downside - they are inherently slow to sample from, needing few thousand steps of iteration to generate images from pure Gaussian noise.
We show that starting from Gaussian noise is unnecessary. Instead, starting from a single forward diffusion with better initialization significantly reduces the number of sampling steps in the reverse conditional diffusion.
New sampling strategy, dubbed ComeCloser-DiffuseFaster (CCDF), also reveals a new insight on how the existing feedforward neural network approaches for inverse problems can be synergistically combined with the diffusion models.
arXiv Detail & Related papers (2021-12-09T04:28:41Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.