論文の概要: On the Effectiveness of Random Weights in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2502.00190v1
- Date: Fri, 31 Jan 2025 22:13:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:14.183236
- Title: On the Effectiveness of Random Weights in Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークにおけるランダムウェイトの有効性について
- Authors: Thu Bui, Carola-Bibiane Schönlieb, Bruno Ribeiro, Beatrice Bevilacqua, Moshe Eliasof,
- Abstract要約: 学習可能な重みをランダムな重みに置き換えることで、GNNは強い予測力を維持できることを示す。
また,GNNにおける特徴ランク崩壊の問題も軽減する。
- 参考スコア(独自算出の注目度): 19.398646175505487
- License:
- Abstract: Graph Neural Networks (GNNs) have achieved remarkable success across diverse tasks on graph-structured data, primarily through the use of learned weights in message passing layers. In this paper, we demonstrate that random weights can be surprisingly effective, achieving performance comparable to end-to-end training counterparts, across various tasks and datasets. Specifically, we show that by replacing learnable weights with random weights, GNNs can retain strong predictive power, while significantly reducing training time by up to 6$\times$ and memory usage by up to 3$\times$. Moreover, the random weights combined with our construction yield random graph propagation operators, which we show to reduce the problem of feature rank collapse in GNNs. These understandings and empirical results highlight random weights as a lightweight and efficient alternative, offering a compelling perspective on the design and training of GNN architectures.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、主にメッセージパッシング層における学習重みの使用を通じて、グラフ構造化データ上のさまざまなタスクにおいて、顕著な成功を収めている。
本稿では,様々なタスクやデータセットに対して,エンドツーエンドのトレーニングに匹敵するパフォーマンスを実現することで,ランダムウェイトが驚くほど効果的であることを実証する。
具体的には、学習可能なウェイトをランダムウェイトに置き換えることで、GNNは強い予測力を保ちながら、トレーニング時間を最大6$\times$に、メモリ使用量を最大3$\times$に削減できることを示す。
さらに,GNNにおける特徴ランク崩壊問題を低減するために,提案手法とランダムな重み付けとを併用したランダムグラフ伝搬演算器について検討した。
これらの理解と実証的な結果は、軽量で効率的な代替手段としてランダムウェイトを強調し、GNNアーキテクチャの設計とトレーニングについて魅力的な視点を提供する。
関連論文リスト
- Training Graph Neural Networks Using Non-Robust Samples [2.1937382384136637]
グラフニューラルネットワーク(GNN)は、構造化されたデータを処理するための、非常に効果的なニューラルネットワークである。
GNNは、データポイント間の関係を表すグラフ構造と、データの特徴行列の両方を活用して、特徴表現を最適化する。
本稿では,モデルトレーニングのためのより小型で効果的なトレーニングセットを構築するために,元のトレーニングセットからノイズに敏感なトレーニングサンプルを選択する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-19T11:10:48Z) - Multicoated and Folded Graph Neural Networks with Strong Lottery Tickets [3.0894823679470087]
本稿では,アーキテクチャとパラメータの両面から検索空間を拡張するためのマルチステージ・フォールディング法とアンシャレッド・マスク法を提案する。
高空間性、競争性能、高メモリ効率を最大98.7%の削減で達成することにより、エネルギー効率の高いグラフ処理に適していることを示す。
論文 参考訳(メタデータ) (2023-12-06T02:16:44Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための様々な分野で成功している。
本稿では,GNNの性能とロバスト性向上のためのアンサンブル学習手法の適用について検討する。
論文 参考訳(メタデータ) (2023-10-22T03:55:13Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNは、グラフを学習するニューラルネットワークの強力なファミリーである。
GNNのスケーリングは、肥大化または拡大によって、不健康な勾配、過度なスムースメント、情報のスカッシングといった問題に悩まされる。
本稿では,現在のGNNの深層化や拡張ではなく,GNNに適したモデルスープをデータ中心の視点で表現することを提案する。
論文 参考訳(メタデータ) (2023-06-18T03:33:46Z) - Fast and Effective GNN Training with Linearized Random Spanning Trees [20.73637495151938]
ノード分類タスクにおいて,GNNをトレーニングするための,より効果的でスケーラブルなフレームワークを提案する。
提案手法は, ランダムに分布する木々の広範囲に分布するGNN重みを徐々に改善する。
これらの経路グラフのスパース性は、GNN訓練の計算負担を大幅に軽減する。
論文 参考訳(メタデータ) (2023-06-07T23:12:42Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
グラフニューラルネットワーク(GNN)は、グラフデータのテストとトレーニングを同一の分布から行うことで、優れたパフォーマンスを実現している。
既存のGNNでは、テストとグラフデータのトレーニングの間に分散シフトが存在する場合、その性能が著しく低下する。
本稿では,学習グラフと異なる分布を持つ未確認試験グラフに対して,満足な性能を実現するために,アウト・オブ・ディストリビューション一般化グラフニューラルネットワーク(OOD-GNN)を提案する。
論文 参考訳(メタデータ) (2021-12-07T16:29:10Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Ripple Walk Training: A Subgraph-based training framework for Large and
Deep Graph Neural Network [10.36962234388739]
本稿では,深部および大規模グラフニューラルネットワークのための一般的なサブグラフベーストレーニングフレームワークであるRipple Walk Training(RWT)を提案する。
RWTは、全グラフからサブグラフをサンプリングしてミニバッチを構成し、全GNNはミニバッチ勾配に基づいて更新される。
グラフの異なるサイズに関する大規模な実験は、様々なGNNを訓練する際のRWTの有効性と効率を実証している。
論文 参考訳(メタデータ) (2020-02-17T19:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。