Understanding Why Adam Outperforms SGD: Gradient Heterogeneity in Transformers
- URL: http://arxiv.org/abs/2502.00213v1
- Date: Fri, 31 Jan 2025 23:05:52 GMT
- Title: Understanding Why Adam Outperforms SGD: Gradient Heterogeneity in Transformers
- Authors: Akiyoshi Tomihari, Issei Sato,
- Abstract summary: Transformer models are challenging to optimize with SGD and typically require adaptives such as Adam.
The reasons behind the superior performance of Adam over SGD remain unclear.
This study provides insights into the optimization challenges of transformer models and offers guidance for designing future optimization algorithms.
- Score: 32.01426831450348
- License:
- Abstract: Transformer models are challenging to optimize with SGD and typically require adaptive optimizers such as Adam. However, the reasons behind the superior performance of Adam over SGD remain unclear. In this study, we investigate the optimization of transformer models by focusing on \emph{gradient heterogeneity}, defined as the disparity in gradient norms among parameters. Our analysis shows that gradient heterogeneity hinders gradient-based optimization, including SGD, while sign-based optimization, a simplified variant of Adam, is less affected. We further examine gradient heterogeneity in transformer models and show that it is influenced by the placement of layer normalization. Additionally, we show that the momentum term in sign-based optimization is important for preventing the excessive growth of linear-head parameters in tasks with many classes. Experimental results from fine-tuning transformer models in both NLP and vision domains validate our theoretical analyses. This study provides insights into the optimization challenges of transformer models and offers guidance for designing future optimization algorithms. Code is available at \url{https://github.com/tom4649/gradient-heterogeneity}.
Related papers
- On the Optimization and Generalization of Two-layer Transformers with Sign Gradient Descent [51.50999191584981]
Sign Gradient Descent (SignGD) serves as an effective surrogate for Adam.
We study how SignGD optimize a two-layer transformer on a noisy dataset.
We find that the poor generalization of SignGD is not solely due to data noise, suggesting that both SignGD and Adam requires high-quality data for real-world tasks.
arXiv Detail & Related papers (2024-10-07T09:36:43Z) - Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
We study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model.
Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model.
arXiv Detail & Related papers (2024-09-28T13:24:11Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Variational Stochastic Gradient Descent for Deep Neural Networks [16.96187187108041]
Current state-of-the-arts are adaptive gradient-based optimization methods such as Adam.
Here, we propose to combine both approaches, resulting in the Variational Gradient Descent (VSGD)
We show how our VSGD method relates to other adaptive gradient-baseds like Adam.
arXiv Detail & Related papers (2024-04-09T18:02:01Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - A Control Theoretic Framework for Adaptive Gradient Optimizers in
Machine Learning [0.6526824510982802]
Adaptive gradient methods have become popular in optimizing deep neural networks.
Recent examples include AdaGrad and Adam.
We develop a generic framework for adaptive gradient methods.
arXiv Detail & Related papers (2022-06-04T17:55:33Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
We propose adaptive learning rate principle, in which the running mean of squared gradient in Adam is replaced by a weighted mean, with weights chosen to maximize the estimated variance each coordinate.
This results in faster adaptation, which leads more desirable empirical convergence behaviors.
arXiv Detail & Related papers (2020-06-21T21:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.