Context-Preserving Tensorial Reconfiguration in Large Language Model Training
- URL: http://arxiv.org/abs/2502.00246v1
- Date: Sat, 01 Feb 2025 00:55:19 GMT
- Title: Context-Preserving Tensorial Reconfiguration in Large Language Model Training
- Authors: Larin Tonix, Morgana Baskerville, Nathaniel Stourton, Ophelia Tattershall,
- Abstract summary: Context-Preservingial Reconfiguration (CPTR) enables dynamic complexity of weight tensors through structured factorization and adaptive contraction.
Empirical evaluations demonstrate that CPTR improves coherence retention across extended sequences.
Performance comparisons reveal that CPTR-enhanced models exhibit greater computational efficiency and reduced memory consumption.
- Score: 0.0
- License:
- Abstract: Handling long-range dependencies in neural architectures has remained a persistent challenge due to computational limitations and inefficient contextual retention mechanisms. Tensorial operations have provided a foundation for restructuring model representations, yet conventional architectures have struggled to incorporate such techniques without introducing excessive complexity. A novel approach, Context-Preserving Tensorial Reconfiguration (CPTR), enables dynamic reorganization of weight tensors through structured factorization and adaptive contraction, allowing for enhanced contextual integration without substantial computational overhead. Empirical evaluations demonstrate that CPTR improves coherence retention across extended sequences, leading to measurable reductions in perplexity and improved recall accuracy for long-context tasks. Performance comparisons reveal that CPTR-enhanced models exhibit greater computational efficiency and reduced memory consumption while maintaining competitive language generation fluency and accuracy. Gradient stability metrics further validate the improved training efficiency, revealing more controlled variance in weight updates. Comparative studies across baseline and CPTR-enhanced models confirm that tensorial reconfiguration contributes to more stable and computationally efficient language modeling. The findings support the potential of CPTR in refining contemporary neural architectures for tasks requiring long-range contextual understanding and efficient memory utilization.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Contextual Compression Encoding for Large Language Models: A Novel Framework for Multi-Layered Parameter Space Pruning [0.0]
Contextual Compression.
(CCE) introduced a multi-stage encoding mechanism that dynamically restructured parameter distributions.
CCE retained linguistic expressivity and coherence, maintaining accuracy across a range of text generation and classification tasks.
arXiv Detail & Related papers (2025-02-12T11:44:19Z) - Structured Token Retention and Computational Memory Paths in Large Language Models [0.0]
This paper introduces a probabilistic selection framework that dynamically adjusts token persistence based on contextual significance.
It is extended through hierarchical memory allocation, refining retention efficiency through structured reallocation of token embeddings.
The integration of STR and CMP into an open-source model illustrates the adaptability of structured memory retention methodologies.
arXiv Detail & Related papers (2025-02-05T11:59:22Z) - Structural Latency Perturbation in Large Language Models Through Recursive State Induction [0.0]
This study introduces a structured latency perturbation mechanism that modifies computational pathways through recursive state induction.
Experiments have demonstrated that applying recursion state adjustments reduces inference latency across varying sequence lengths.
The analysis of computational overhead has suggested that selectively suppressing activations contributes to improved power efficiency.
arXiv Detail & Related papers (2025-02-02T11:45:35Z) - Intrinsic Tensor Field Propagation in Large Language Models: A Novel Approach to Contextual Information Flow [0.0]
Intrinsic Field propagation improves contextual retention, dependency resolution, and inference across various linguistic structures.
Experiments conducted on an open-source transformer-based model demonstrate that I provides measurable improvements in contextual retention, dependency resolution, and inference across various linguistic structures.
arXiv Detail & Related papers (2025-01-31T08:32:32Z) - Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis [0.0]
The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy.
A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding.
Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability.
arXiv Detail & Related papers (2025-01-23T11:34:04Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance.
Most present techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context.
In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss.
arXiv Detail & Related papers (2024-10-07T09:08:32Z) - Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective [125.00228936051657]
We introduce NTK-CL, a novel framework that eliminates task-specific parameter storage while adaptively generating task-relevant features.
By fine-tuning optimizable parameters with appropriate regularization, NTK-CL achieves state-of-the-art performance on established PEFT-CL benchmarks.
arXiv Detail & Related papers (2024-07-24T09:30:04Z) - Gated Recurrent Neural Networks with Weighted Time-Delay Feedback [59.125047512495456]
We introduce a novel gated recurrent unit (GRU) with a weighted time-delay feedback mechanism.
We show that $tau$-GRU can converge faster and generalize better than state-of-the-art recurrent units and gated recurrent architectures.
arXiv Detail & Related papers (2022-12-01T02:26:34Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.