論文の概要: ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
- arxiv url: http://arxiv.org/abs/2502.00299v2
- Date: Wed, 21 May 2025 10:38:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:57.33281
- Title: ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
- Title(参考訳): ChunkKV: 効率的な長期LLM推論のための意味保存KVキャッシュ圧縮
- Authors: Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Yue Liu, Bo Li, Xuming Hu, Xiaowen Chu,
- Abstract要約: セマンティックチャンクを基本圧縮単位として扱うことにより,KVキャッシュの圧縮を再現するChunkKVを提案する。
このアプローチは完全な言語構造と文脈整合性を保持し、攻撃的な圧縮の下でも本質的な意味が維持されることを保証する。
ChunkKVは、同じ圧縮比を維持しながら8.7%の精度で最先端の手法より優れている。
- 参考スコア(独自算出の注目度): 28.96662510838151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) require significant GPU memory when processing long texts, with the key value (KV) cache consuming up to 70\% of total memory during inference. Although existing compression methods reduce memory by evaluating the importance of individual tokens, they overlook critical semantic relationships between tokens, resulting in fragmented context and degraded performance. We introduce ChunkKV, which fundamentally reimagines KV cache compression by treating semantic chunks - rather than isolated tokens - as basic compression units. This approach preserves complete linguistic structures and contextual integrity, ensuring that essential meaning is retained even under aggressive compression. Our innovation includes a novel layer-wise index reuse technique that exploits the higher cross-layer similarity of preserved indices in ChunkKV, reducing computational overhead and improving throughput by 26.5\%. Comprehensive evaluations on challenging benchmarks: LongBench, Needle-In-A-HayStack, GSM8K, and JailbreakV demonstrate that ChunkKV outperforms state-of-the-art methods by up to 8.7\% in precision while maintaining the same compression ratio. These results confirm that semantic-aware compression significantly enhances both efficiency and performance for long-context LLM inference, providing a simple yet effective solution to the memory bottleneck problem.
- Abstract(参考訳): 大きな言語モデル(LLM)は、長いテキストを処理する際に大きなGPUメモリを必要とし、キー値(KV)キャッシュは推論中に全メモリの最大70%を消費する。
既存の圧縮手法は、個々のトークンの重要性を評価することによってメモリを削減するが、トークン間の重要な意味関係を見落とし、断片化されたコンテキストと劣化したパフォーマンスをもたらす。
分離トークンではなくセマンティックチャンクを基本圧縮単位として扱うことにより,KVキャッシュ圧縮を根本的に再定義するChunkKVを紹介する。
このアプローチは完全な言語構造と文脈整合性を保持し、攻撃的な圧縮の下でも本質的な意味が維持されることを保証する。
我々の革新には、チャンクKVにおける保存インデックスのより高い層間類似性を活用し、計算オーバーヘッドを低減し、スループットを26.5倍改善する新しい層間インデックス再利用技術が含まれている。
LongBench、Needle-In-A-HayStack、GSM8K、JailbreakVは、ChunkKVが同じ圧縮比を維持しながら8.7%の精度で最先端の手法より優れていることを示した。
これらの結果から, セマンティック・アウェア圧縮は長文LLM推論の効率と性能を著しく向上させ, メモリボトルネック問題に対する単純かつ効果的な解決策を提供することがわかった。
関連論文リスト
- WindowKV: Task-Adaptive Group-Wise KV Cache Window Selection for Efficient LLM Inference [9.572076809796448]
タスク適応型KVキャッシュウィンドウ選択手法であるWindowKVを提案する。
WindowKVは、元のKVキャッシュの12%しか使用せず、完全なKVキャッシュ保持に匹敵する性能を維持していることを示す。
提案手法は,Needle-in-a-Haystack評価における最先端の結果も達成し,その有効性と堅牢性を強調した。
論文 参考訳(メタデータ) (2025-03-23T03:36:52Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
我々はDBudgetKVと呼ばれる新しいKVキャッシュ圧縮手法を提案する。
これは、残りのKVキャッシュがフルキャッシュのパフォーマンスにマッチしそうにない場合に、注意に基づくメトリクスを信号として、プルーニングプロセスを停止させる。
提案手法は,メモリ空間を最適化するだけでなく,既存の手法に比べて推論時間を短縮する。
論文 参考訳(メタデータ) (2025-02-24T06:33:39Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
KVプルーニングやKV量子化を含むKV圧縮法は、トークンまたは精度寸法に重点を置いている。
量子化プルーニング(quantized pruning)により,KVキャッシュにより多くのトークンを格納することで,LLMの長文性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - SCBench: A KV Cache-Centric Analysis of Long-Context Methods [61.025422435235456]
KVキャッシュ中心の視点から長文の手法を評価するベンチマークであるSCBenchを紹介する。
我々は、Gated Linear RNNsやMamba-Attention Hybridsを含む8つのカテゴリの長期コンテキストソリューションについて、広範なKVキャッシュ中心の分析を行う。
本研究は,O(n)メモリとサブO(n2)プリフィルによるスパース符号化が堅牢に動作する一方で,サブO(n)メモリ手法がマルチターンシナリオに悩まされていることを示す。
論文 参考訳(メタデータ) (2024-12-13T17:59:52Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
ロングコンテキストは推論効率に重大な課題をもたらす。
本稿では,意味クラスタの粒度でトークンをリコールするClusterKVを紹介する。
実験結果から、ClusterKVは32kのコンテキスト長を持つ様々なタスクにおいて、無視可能な精度の損失が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-04T10:58:27Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
キーバリューキャッシュサイズを減らすための既存のアプローチは、圧縮戦略を学ぶためのモデルを微調整するか、シーケンス長を減らすためにアテンションスコアを利用するかのいずれかである。
キャッシュされたKVペアに対して、$L$とアテンションスコアとの間に明らかな相関関係が見られ、キー埋め込みの低い$L$がデコード時に高いアテンションスコアをもたらす。
実験の結果,この単純な手法により,言語モデリングやニードル・イン・ア・ヘイスタックタスクでは50%,パスキー検索タスクでは90%,精度を損なうことなく,KVキャッシュサイズを50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T11:35:16Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。