TriQXNet: Forecasting Dst Index from Solar Wind Data Using an Interpretable Parallel Classical-Quantum Framework with Uncertainty Quantification
- URL: http://arxiv.org/abs/2407.06658v2
- Date: Wed, 10 Jul 2024 16:53:38 GMT
- Title: TriQXNet: Forecasting Dst Index from Solar Wind Data Using an Interpretable Parallel Classical-Quantum Framework with Uncertainty Quantification
- Authors: Md Abrar Jahin, M. F. Mridha, Zeyar Aung, Nilanjan Dey, R. Simon Sherratt,
- Abstract summary: Geomagnetic storms can disrupt critical infrastructure like GPS, satellite communications, and power grids.
This research introduces TriQXNet, a novel hybrid classical-quantum neural network for Dst forecasting.
Our model integrates classical and quantum computing, conformal prediction, and explainable AI (XAI) within a hybrid architecture.
- Score: 2.1940162009107382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geomagnetic storms, caused by solar wind energy transfer to Earth's magnetic field, can disrupt critical infrastructure like GPS, satellite communications, and power grids. The disturbance storm-time (Dst) index measures storm intensity. Despite advancements in empirical, physics-based, and machine-learning models using real-time solar wind data, accurately forecasting extreme geomagnetic events remains challenging due to noise and sensor failures. This research introduces TriQXNet, a novel hybrid classical-quantum neural network for Dst forecasting. Our model integrates classical and quantum computing, conformal prediction, and explainable AI (XAI) within a hybrid architecture. To ensure high-quality input data, we developed a comprehensive preprocessing pipeline that included feature selection, normalization, aggregation, and imputation. TriQXNet processes preprocessed solar wind data from NASA's ACE and NOAA's DSCOVR satellites, predicting the Dst index for the current hour and the next, providing vital advance notice to mitigate geomagnetic storm impacts. TriQXNet outperforms 13 state-of-the-art hybrid deep-learning models, achieving a root mean squared error of 9.27 nanoteslas (nT). Rigorous evaluation through 10-fold cross-validated paired t-tests confirmed its superior performance with 95% confidence. Conformal prediction techniques provide quantifiable uncertainty, which is essential for operational decisions, while XAI methods like ShapTime enhance interpretability. Comparative analysis shows TriQXNet's superior forecasting accuracy, setting a new level of expectations for geomagnetic storm prediction and highlighting the potential of classical-quantum hybrid models in space weather forecasting.
Related papers
- Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model [0.0]
Thunderstorms have significant social and economic impacts due to heavy precipitation, hail, lightning, and strong winds.
We develop SALAMA 1D, a deep neural network that directly infers the probability of thunderstorm occurrence from vertical profiles of ten atmospheric variables.
SALAMA 1D is trained over Central Europe with lightning observations as the ground truth.
arXiv Detail & Related papers (2024-09-30T08:40:28Z) - Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa.
This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on tropical waves (TWs) to predict daily rainfall during the July-September monsoon season.
arXiv Detail & Related papers (2024-08-29T08:36:22Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
We evaluate the efficiency of three surrogate models in speeding up experimental research by simulating land surface processes.
Our findings indicate that while all models on average demonstrate high accuracy over the forecast period, the LSTM network excels in continental long-range predictions when carefully tuned.
arXiv Detail & Related papers (2024-07-23T13:26:05Z) - Forecasting Geoffective Events from Solar Wind Data and Evaluating the Most Predictive Features through Machine Learning Approaches [0.0]
This study addresses the prediction of geomagnetic disturbances by exploiting machine learning techniques.
The problem is approached as a binary classification aiming to predict one hour in advance a decrease in the SYM-H geomagnetic activity index below the threshold of $-50$ nT.
The optimal performance of the adopted neural network in properly forecasting the onset of geomagnetic storms is shown.
arXiv Detail & Related papers (2024-03-14T20:13:26Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Convolutional GRU Network for Seasonal Prediction of the El
Ni\~no-Southern Oscillation [24.35408676030181]
We present a modified Convolutional Gated Recurrent Unit (ConvGRU) network for the El Nino-Southern Oscillation (ENSO) region-temporal sequence prediction problem.
The proposed ConvGRU network, with an encoder-decoder sequence-to-sequence structure, takes historical SST maps of the Pacific region as input and generates future SST maps for subsequent months within the ENSO region.
The results demonstrate that the ConvGRU network significantly improves the predictability of the Nino 3.4 index compared to LIM, AF, and RNN.
arXiv Detail & Related papers (2023-06-18T00:15:45Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.