Enhancing Highway Safety: Accident Detection on the A9 Test Stretch Using Roadside Sensors
- URL: http://arxiv.org/abs/2502.00402v1
- Date: Sat, 01 Feb 2025 11:34:16 GMT
- Title: Enhancing Highway Safety: Accident Detection on the A9 Test Stretch Using Roadside Sensors
- Authors: Walter Zimmer, Ross Greer, Xingcheng Zhou, Rui Song, Marc Pavel, Daniel Lehmberg, Ahmed Ghita, Akshay Gopalkrishnan, Mohan Trivedi, Alois Knoll,
- Abstract summary: Road traffic injuries are the leading cause of death for people aged 5-29, resulting in about 1.19 million deaths each year.
To reduce these fatalities, it is essential to address human errors like speeding, drunk driving, and distractions.
We propose an accident detection framework that combines a rule-based approach with a learning-based one.
- Score: 6.420737230522813
- License:
- Abstract: Road traffic injuries are the leading cause of death for people aged 5-29, resulting in about 1.19 million deaths each year. To reduce these fatalities, it is essential to address human errors like speeding, drunk driving, and distractions. Additionally, faster accident detection and quicker medical response can help save lives. We propose an accident detection framework that combines a rule-based approach with a learning-based one. We introduce a dataset of real-world highway accidents featuring high-speed crash sequences. It includes 294,924 labeled 2D boxes, 93,012 labeled 3D boxes, and track IDs across 48,144 frames captured at 10 Hz using four roadside cameras and LiDAR sensors. The dataset covers ten object classes and is released in the OpenLABEL format. Our experiments and analysis demonstrate the reliability of our method.
Related papers
- Abductive Ego-View Accident Video Understanding for Safe Driving
Perception [75.60000661664556]
We present MM-AU, a novel dataset for Multi-Modal Accident video Understanding.
MM-AU contains 11,727 in-the-wild ego-view accident videos, each with temporally aligned text descriptions.
We present an Abductive accident Video understanding framework for Safe Driving perception (AdVersa-SD)
arXiv Detail & Related papers (2024-03-01T10:42:52Z) - ACAV: A Framework for Automatic Causality Analysis in Autonomous Vehicle
Accident Recordings [5.578446693797519]
Recent fatalities have emphasized the importance of safety validation through large-scale testing.
We propose ACAV, an automated framework designed to conduct causality analysis for AV accident recordings.
We evaluate ACAV on the Apollo ADS, finding that it can identify five distinct types of causal events in 93.64% of 110 accident recordings.
arXiv Detail & Related papers (2024-01-13T12:41:05Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Augmenting Ego-Vehicle for Traffic Near-Miss and Accident Classification
Dataset using Manipulating Conditional Style Translation [0.3441021278275805]
There is no difference between accident and near-miss at the time before the accident happened.
Our contribution is to redefine the accident definition and re-annotate the accident inconsistency on DADA-2000 dataset together with near-miss.
The proposed method integrates two different components: conditional style translation (CST) and separable 3-dimensional convolutional neural network (S3D)
arXiv Detail & Related papers (2023-01-06T22:04:47Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
Road accidents are the eight leading cause of death all over the world.
Various factors cause driver's fatigue.
Ontological knowledge and rules for driver fatigue detection are to be integrated into an intelligent system.
arXiv Detail & Related papers (2022-08-31T08:42:28Z) - Smartphone-based Hard-braking Event Detection at Scale for Road Safety
Services [6.451490979743455]
Road crashes are the sixth leading cause of lost disability-adjusted life-years (DALYs) worldwide.
This paper presents a scalable approach for detecting hard-braking events using the kinematics data collected from smartphone sensors.
We train a Transformer-based machine learning model for hard-braking event detection using concurrent sensor readings from smartphones and vehicle sensors from drivers who connect their phone to the vehicle while navigating in Google Maps.
arXiv Detail & Related papers (2022-02-04T01:30:32Z) - Deep Representation of Imbalanced Spatio-temporal Traffic Flow Data for
Traffic Accident Detection [0.3670422696827526]
This paper studies deep representation of loop detector data using Long-Short Term Memory (LSTM) network for automatic detection of freeway accidents.
Experiments on real accident and loop detector data collected from the Twin Cities Metro freeways of Minnesota demonstrate that deep representation of traffic flow data using LSTM network has the potential to detect freeway accidents in less than 18 minutes.
arXiv Detail & Related papers (2021-08-21T13:18:04Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Computer Vision based Accident Detection for Autonomous Vehicles [0.0]
We propose a novel support system for self-driving cars that detects vehicular accidents through a dashboard camera.
The framework has been tested on a custom dataset of dashcam footage and achieves a high accident detection rate while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-12-20T08:51:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.