Exploring Linear Attention Alternative for Single Image Super-Resolution
- URL: http://arxiv.org/abs/2502.00404v1
- Date: Sat, 01 Feb 2025 11:39:02 GMT
- Title: Exploring Linear Attention Alternative for Single Image Super-Resolution
- Authors: Rongchang Lu, Changyu Li, Donghang Li, Guojing Zhang, Jianqiang Huang, Xilai Li,
- Abstract summary: Deep learning-based single-image super-resolution (SISR) technology focuses on enhancing low-resolution (LR) images into high-resolution (HR) ones.
We present a novel approach that combines the Receptance Weighted Key Value (RWKV) architecture with feature extraction techniques.
Under the 4x Super-Resolution tasks, compared to the MambaIR model, we achieved an average improvement of 0.26% in PSNR and 0.16% in SSIM.
- Score: 28.267177967085143
- License:
- Abstract: Deep learning-based single-image super-resolution (SISR) technology focuses on enhancing low-resolution (LR) images into high-resolution (HR) ones. Although significant progress has been made, challenges remain in computational complexity and quality, particularly in remote sensing image processing. To address these issues, we propose our Omni-Scale RWKV Super-Resolution (OmniRWKVSR) model which presents a novel approach that combines the Receptance Weighted Key Value (RWKV) architecture with feature extraction techniques such as Visual RWKV Spatial Mixing (VRSM) and Visual RWKV Channel Mixing (VRCM), aiming to overcome the limitations of existing methods and achieve superior SISR performance. This work has proved able to provide effective solutions for high-quality image reconstruction. Under the 4x Super-Resolution tasks, compared to the MambaIR model, we achieved an average improvement of 0.26% in PSNR and 0.16% in SSIM.
Related papers
- Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Exploiting Self-Supervised Constraints in Image Super-Resolution [72.35265021054471]
This paper introduces a novel self-supervised constraint for single image super-resolution, termed SSC-SR.
SSC-SR uniquely addresses the divergence in image complexity by employing a dual asymmetric paradigm and a target model updated via exponential moving average to enhance stability.
Empirical evaluations reveal that our SSC-SR framework delivers substantial enhancements on a variety of benchmark datasets, achieving an average increase of 0.1 dB over EDSR and 0.06 dB over SwinIR.
arXiv Detail & Related papers (2024-03-30T06:18:50Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
Single image super-resolution (SISR) has experienced significant advancements, primarily driven by deep convolutional networks.
Traditional networks are limited to upscaling images to a fixed scale, leading to the utilization of implicit neural functions for generating arbitrarily scaled images.
We introduce a novel and efficient framework, the Mixture of Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales.
arXiv Detail & Related papers (2023-11-20T05:34:36Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Super-resolution Reconstruction of Single Image for Latent features [8.857209365343646]
Single-image super-resolution (SISR) typically focuses on restoring various degraded low-resolution (LR) images to a single high-resolution (HR) image.
It is often challenging for models to simultaneously maintain high quality and rapid sampling while preserving diversity in details and texture features.
This challenge can lead to issues such as model collapse, lack of rich details and texture features in the reconstructed HR images, and excessive time consumption for model sampling.
arXiv Detail & Related papers (2022-11-16T09:37:07Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - SRR-Net: A Super-Resolution-Involved Reconstruction Method for High
Resolution MR Imaging [7.42807471627113]
The proposed SRR-Net is capable of recovering high-resolution brain images with both good visual quality and perceptual quality.
Experiment results using in-vivo HR multi-coil brain data indicate that the proposed SRR-Net is capable of recovering high-resolution brain images.
arXiv Detail & Related papers (2021-04-13T02:19:12Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
Image Super-Resolution (SR) provides a promising technique to enhance the image quality of low-resolution optical sensors.
In this paper, we attempt to leverage complementary information from a low-cost channel (visible/depth) to boost image quality of an expensive channel (thermal) using fewer parameters.
arXiv Detail & Related papers (2020-12-07T02:15:28Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.