論文の概要: Causal Abstraction Learning based on the Semantic Embedding Principle
- arxiv url: http://arxiv.org/abs/2502.00407v1
- Date: Sat, 01 Feb 2025 11:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:10.107442
- Title: Causal Abstraction Learning based on the Semantic Embedding Principle
- Title(参考訳): 意味的埋め込み原理に基づく因果的抽象学習
- Authors: Gabriele D'Acunto, Fabio Massimo Zennaro, Yorgos Felekis, Paolo Di Lorenzo,
- Abstract要約: 構造因果モデル(SCM)により,複数の解像度で複雑なシステムを調べることができる。
本稿では,CAの学習を可能にするSCMのカテゴリ理論的アプローチを提案する。
提案手法は,CAの構造に関する事前情報が異なる合成脳データと実世界脳データの両方で成功していることを示す。
- 参考スコア(独自算出の注目度): 8.867171632530908
- License:
- Abstract: Structural causal models (SCMs) allow us to investigate complex systems at multiple levels of resolution. The causal abstraction (CA) framework formalizes the mapping between high- and low-level SCMs. We address CA learning in a challenging and realistic setting, where SCMs are inaccessible, interventional data is unavailable, and sample data is misaligned. A key principle of our framework is $\textit{semantic embedding}$, formalized as the high-level distribution lying on a subspace of the low-level one. This principle naturally links linear CA to the geometry of the $\textit{Stiefel manifold}$. We present a category-theoretic approach to SCMs that enables the learning of a CA by finding a morphism between the low- and high-level probability measures, adhering to the semantic embedding principle. Consequently, we formulate a general CA learning problem. As an application, we solve the latter problem for linear CA; considering Gaussian measures and the Kullback-Leibler divergence as an objective. Given the nonconvexity of the learning task, we develop three algorithms building upon existing paradigms for Riemannian optimization. We demonstrate that the proposed methods succeed on both synthetic and real-world brain data with different degrees of prior information about the structure of CA.
- Abstract(参考訳): 構造因果モデル(SCM)により,複数の解像度で複雑なシステムを調べることができる。
因果抽象化(CA)フレームワークは、高レベルのSCMと低レベルのSCMのマッピングを形式化する。
我々は,SCMがアクセス不能であり,介入データが利用不能であり,サンプルデータが一致していない,困難な現実的な状況下でCA学習に対処する。
我々のフレームワークの重要な原理は$\textit{semantic embedding}$であり、低レベルのものの部分空間に横たわる高レベルの分布として形式化されている。
この原理は、線型 CA を $\textit{Stiefel manifold}$ の幾何学と自然に結び付ける。
本稿では, セマンティック埋め込み原理に則って, 低レベルと高レベルの確率測度の間の射を求めることによって, CAの学習を可能にするSCMのカテゴリ理論的アプローチを提案する。
その結果、一般のCA学習問題を定式化する。
応用として、ガウス測度とクルバック・リーバーの発散を目的とする線形CAに対する後者の問題を解く。
学習課題の非凸性を考えると、リーマン最適化のための既存のパラダイムに基づく3つのアルゴリズムを開発する。
提案手法は,CAの構造に関する事前情報が異なる合成脳データと実世界脳データの両方で成功していることを示す。
関連論文リスト
- AdaCBM: An Adaptive Concept Bottleneck Model for Explainable and Accurate Diagnosis [38.16978432272716]
CLIPやConcept Bottleneck Models(CBM)といったビジョン言語モデルの統合は、ディープニューラルネットワーク(DNN)の決定を説明するための有望なアプローチを提供する。
CLIPは説明可能性とゼロショット分類の両方を提供するが、ジェネリックイメージとテキストデータによる事前トレーニングは、その分類精度と医療画像診断タスクへの適用性を制限する可能性がある。
本稿では, 単純な線形分類システムとして, 幾何学的表現のレンズを通して CBM フレームワークを再検討することによって, 従来と異なるアプローチをとる。
論文 参考訳(メタデータ) (2024-08-04T11:59:09Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Causal Optimal Transport of Abstractions [8.642152250082368]
因果抽象化(CA)理論は、複数の構造因果モデル(SCM)を異なるレベルの粒度で関連付けるための公式な基準を確立する。
基礎となるSCMの完全な知識を前提とせずに、観測データや介入データから抽象地図を学習する最初の方法であるCOTAを提案する。
合成および実世界の問題に対してCOTAを広範囲に評価し,非因果的・独立的・集合的COTA定式化に対するCOTAの優位性を示す。
論文 参考訳(メタデータ) (2023-12-13T12:54:34Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
単一チャネルソース分離(SCSS)の問題点について検討する。
我々は、様々なアプリケーション領域に特に適するサイクロ定常信号に焦点を当てる。
本稿では,最小MSE推定器と競合するU-Netアーキテクチャを用いたディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T14:04:56Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-16T16:46:32Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Automated Imbalanced Classification via Layered Learning [0.734084539365505]
トレーニングインスタンスのクラス分布のバランスをとるために再サンプリング戦略を適用することは、これらの問題に対処するための一般的なアプローチである。
多くの最先端の手法は、再サンプリングプロセスを実行するために決定境界に近い関心の事例を見つける。
オーバーサンプリングは、少数層からインスタンスに含まれる情報を伝播することで、過度に適合する可能性を高める可能性がある。
論文 参考訳(メタデータ) (2022-05-05T10:32:24Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
CIL(Class-incremental Learning)は、少数のクラス(ベースクラス)から始まる設定で広く研究されている。
我々は、多数のベースクラスで事前訓練された強力なモデルから始まるCILの実証済み実世界の設定について検討する。
提案手法は、解析されたCIL設定すべてに頑健で一般化されている。
論文 参考訳(メタデータ) (2022-04-07T17:58:07Z) - Policy Gradient Methods for the Noisy Linear Quadratic Regulator over a
Finite Horizon [3.867363075280544]
線形2次レギュレータ(LQR)問題における最適ポリシーを見つけるための強化学習法について検討する。
我々は、有限時間地平線と弱い仮定の下での状態ダイナミクスの設定に対する大域的線形収束を保証する。
基礎となるダイナミクスのモデルを仮定し、データに直接メソッドを適用する場合の結果を示す。
論文 参考訳(メタデータ) (2020-11-20T09:51:49Z) - Provable Hierarchical Imitation Learning via EM [2.864550757598007]
専門家による実証から選択肢型階層政策を学習することを検討する。
Danielらによって提案されたEMアプローチを特徴付ける。
提案アルゴリズムは実パラメータの周囲のノルム球に高い確率で収束することを示す。
論文 参考訳(メタデータ) (2020-10-07T03:21:57Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。