Doing More with Less: A Survey on Routing Strategies for Resource Optimisation in Large Language Model-Based Systems
- URL: http://arxiv.org/abs/2502.00409v3
- Date: Mon, 21 Jul 2025 12:20:06 GMT
- Title: Doing More with Less: A Survey on Routing Strategies for Resource Optimisation in Large Language Model-Based Systems
- Authors: Clovis Varangot-Reille, Christophe Bouvard, Antoine Gourru, Mathieu Ciancone, Marion Schaeffer, François Jacquenet,
- Abstract summary: Large Language Model (LLM)-based systems are usually designed with a single, general-purpose LLM to handle all user queries.<n>These systems may be inefficient as different queries may require different levels of reasoning, domain knowledge or pre-processing.<n>A routing mechanism can therefore be employed to route queries to more appropriate components, such as smaller or specialised models.
- Score: 1.430963201405577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Model (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component, such as conversational agents, are usually designed with monolithic, static architectures that rely on a single, general-purpose LLM to handle all user queries. However, these systems may be inefficient as different queries may require different levels of reasoning, domain knowledge or pre-processing. While generalist LLMs (e.g. GPT-4o, Claude-Sonnet) perform well across a wide range of tasks, they may incur significant financial, energy and computational costs. These costs may be disproportionate for simpler queries, resulting in unnecessary resource utilisation. A routing mechanism can therefore be employed to route queries to more appropriate components, such as smaller or specialised models, thereby improving efficiency and optimising resource consumption. This survey aims to provide a comprehensive overview of routing strategies in LLM-based systems. Specifically, it reviews when, why, and how routing should be integrated into LLM pipelines to improve efficiency, scalability, and performance. We define the objectives to optimise, such as cost minimisation and performance maximisation, and discuss the timing of routing within the LLM workflow, whether it occurs before or after generation. We also detail the various implementation strategies, including similarity-based, supervised, reinforcement learning-based, and generative methods. Practical considerations such as industrial applications and current limitations are also examined, like standardising routing experiments, accounting for non-financial costs, and designing adaptive strategies. By formalising routing as a performance-cost optimisation problem, this survey provides tools and directions to guide future research and development of adaptive low-cost LLM-based systems.
Related papers
- Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
arXiv Detail & Related papers (2025-06-06T23:13:08Z) - Dynamically Learned Test-Time Model Routing in Language Model Zoos with Service Level Guarantees [21.2175476090125]
Open-weight LLM zoos provide access to numerous high-quality models.<n>Most users simply want factually correct, safe, and satisfying responses without concerning themselves with model technicalities.<n>We introduce MESS+, a cost-optimal optimization algorithm for cost-optimal request routing.
arXiv Detail & Related papers (2025-05-26T13:11:08Z) - Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL [62.984693936073974]
Large language models (LLMs) excel in tasks like question answering and dialogue.<n>Complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning.<n>We propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents.
arXiv Detail & Related papers (2025-05-23T16:51:54Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.
Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.
Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Smart Routing: Cost-Effective Multi-LLM Serving for Multi-Core AIOS [31.60019342381251]
Existing scheduling frameworks mainly target at latency optimization.
This paper proposes an efficient capability-cost coordinated scheduling framework, ECCOS, for multi-LLM serving.
arXiv Detail & Related papers (2025-02-27T22:35:31Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Universal Model Routing for Efficient LLM Inference [72.65083061619752]
We consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time.
We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts.
We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors.
arXiv Detail & Related papers (2025-02-12T20:30:28Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.<n>One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.<n>We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - A Survey of Query Optimization in Large Language Models [10.255235456427037]
RAG mitigates the limitations of Large Language Models by dynamically retrieving and leveraging up-to-date relevant information.<n>QO has emerged as a critical element, playing a pivotal role in determining the effectiveness of RAG's retrieval stage.
arXiv Detail & Related papers (2024-12-23T13:26:04Z) - PickLLM: Context-Aware RL-Assisted Large Language Model Routing [0.5325390073522079]
PickLLM is a lightweight framework that relies on Reinforcement Learning (RL) to route on-the-fly queries to available models.<n>We demonstrate the speed of convergence for different learning rates and improvement in hard metrics such as cost per querying session and overall response latency.
arXiv Detail & Related papers (2024-12-12T06:27:12Z) - EVOLvE: Evaluating and Optimizing LLMs For In-Context Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.<n>We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.<n>Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Large Language Models for Knowledge-Free Network Management: Feasibility Study and Opportunities [36.70339455624253]
This article presents a novel knowledge-free network management paradigm with the power of foundation models called large language models (LLMs)
LLMs can understand important contexts from input prompts containing minimal system information, thereby offering remarkable inference performance even for entirely new tasks.
Numerical results validate that knowledge-free LLMs are able to achieve comparable performance to existing knowledge-based optimization algorithms.
arXiv Detail & Related papers (2024-10-06T07:42:23Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - TensorOpera Router: A Multi-Model Router for Efficient LLM Inference [27.2803289964386]
TO-lemma is a non-monolithic LLM querying system.
It seamlessly integrates various LLM experts into a single query interface.
It dynamically routes incoming queries to the most high-performant expert based on query's requirements.
arXiv Detail & Related papers (2024-08-22T11:57:07Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - RouterBench: A Benchmark for Multi-LLM Routing System [25.515453832224804]
No single model can optimally address all tasks and applications, particularly when balancing performance with cost.
This limitation has led to the development of LLM routing systems, which combine the strengths of various models to overcome the constraints of individual LLMs.
We present RouterBench, a novel evaluation framework designed to systematically assess the efficacy of LLM routing systems.
arXiv Detail & Related papers (2024-03-18T17:59:04Z) - ReSLLM: Large Language Models are Strong Resource Selectors for
Federated Search [35.44746116088232]
Federated search will become increasingly pivotal in the context of Retrieval-Augmented Generation pipelines.
Current SOTA resource selection methodologies rely on feature-based learning approaches.
We propose ReSLLM to drive the selection of resources in federated search in a zero-shot setting.
arXiv Detail & Related papers (2024-01-31T07:58:54Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.