論文の概要: Compositional Concept-Based Neuron-Level Interpretability for Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2502.00684v1
- Date: Sun, 02 Feb 2025 06:05:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:08.284742
- Title: Compositional Concept-Based Neuron-Level Interpretability for Deep Reinforcement Learning
- Title(参考訳): 深層強化学習のための合成概念に基づくニューロンレベル解釈可能性
- Authors: Zeyu Jiang, Hai Huang, Xingquan Zuo,
- Abstract要約: 深部強化学習(DRL)は多くの複雑な制御問題に対処することに成功している。
現在のDRL解釈法は主にニューラルネットワークをブラックボックスとして扱う。
本稿では,ニューロンレベルでのDRLモデルの詳細な説明を提供する,新しい概念に基づく解釈可能性手法を提案する。
- 参考スコア(独自算出の注目度): 2.9539724161670167
- License:
- Abstract: Deep reinforcement learning (DRL), through learning policies or values represented by neural networks, has successfully addressed many complex control problems. However, the neural networks introduced by DRL lack interpretability and transparency. Current DRL interpretability methods largely treat neural networks as black boxes, with few approaches delving into the internal mechanisms of policy/value networks. This limitation undermines trust in both the neural network models that represent policies and the explanations derived from them. In this work, we propose a novel concept-based interpretability method that provides fine-grained explanations of DRL models at the neuron level. Our method formalizes atomic concepts as binary functions over the state space and constructs complex concepts through logical operations. By analyzing the correspondence between neuron activations and concept functions, we establish interpretable explanations for individual neurons in policy/value networks. Experimental results on both continuous control tasks and discrete decision-making environments demonstrate that our method can effectively identify meaningful concepts that align with human understanding while faithfully reflecting the network's decision-making logic.
- Abstract(参考訳): ディープラーニング学習(DRL)は、ニューラルネットワークで表される学習ポリシーや値を通じて、多くの複雑な制御問題に対処することに成功している。
しかし、DRLによって導入されたニューラルネットワークは、解釈可能性と透明性が欠如している。
現在のDRL解釈可能性法は主にニューラルネットワークをブラックボックスとして扱うが、ポリシー/バリューネットワークの内部メカニズムを探求するアプローチはほとんどない。
この制限は、ポリシーを表すニューラルネットワークモデルとそれらに由来する説明の両方に対する信頼を損なう。
本研究では,ニューロンレベルでのDRLモデルの詳細な説明を提供する,新しい概念に基づく解釈可能性法を提案する。
本手法は状態空間上の二元関数として原子概念を定式化し,論理演算により複雑な概念を構築する。
ニューロンの活性化と概念関数の対応を解析することにより、ポリシ/バリューネットワークにおける個々のニューロンの解釈可能な説明を確立する。
連続制御タスクと離散的意思決定環境の両方の実験結果から,ネットワークの意思決定ロジックを忠実に反映しつつ,人間の理解に沿う意味ある概念を効果的に識別できることが示されている。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies [51.03989561425833]
本稿では、エンドツーエンドポリシー学習のためのニューラルDNF-MTと呼ばれるニューラルシンボリックアプローチを提案する。
ニューラルDNF-MTモデルの微分可能な性質は、訓練にディープアクター批判アルゴリズムを使用することを可能にする。
決定論的ポリシーの2値表現をどのように編集し、ニューラルモデルに組み込むかを示す。
論文 参考訳(メタデータ) (2025-01-07T15:51:49Z) - ConceptLens: from Pixels to Understanding [1.3466710708566176]
ConceptLensは、隠れたニューロンの活性化を可視化することによって、ディープニューラルネットワーク(DNN)の複雑な動作を照明する革新的なツールである。
ディープラーニングとシンボリックな方法を統合することで、ConceptLensは、ニューロンの活性化を引き起こすものを理解するユニークな方法を提供する。
論文 参考訳(メタデータ) (2024-10-04T20:49:12Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Understanding polysemanticity in neural networks through coding theory [0.8702432681310401]
本稿では,ネットワークの解釈可能性に関する新たな実践的アプローチと,多意味性やコードの密度に関する理論的考察を提案する。
ランダムなプロジェクションによって、ネットワークがスムーズか非微分可能かが明らかになり、コードがどのように解釈されるかを示す。
我々のアプローチは、ニューラルネットワークにおける解釈可能性の追求を前進させ、その基盤となる構造についての洞察を与え、回路レベルの解釈可能性のための新たな道を提案する。
論文 参考訳(メタデータ) (2024-01-31T16:31:54Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Understanding Distributed Representations of Concepts in Deep Neural
Networks without Supervision [25.449397570387802]
本稿では,ニューロンの主部分集合を選択することによって,概念の分散表現を発見する教師なし手法を提案する。
我々の経験から、類似のニューロン活性化状態のインスタンスはコヒーレントな概念を共有する傾向があることが示されている。
データ内のラベルなしサブクラスを特定し、誤分類の原因を検出するために利用することができる。
論文 参考訳(メタデータ) (2023-12-28T07:33:51Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Training spiking neural networks using reinforcement learning [0.0]
本稿では,スパイクニューラルネットワークのトレーニングを容易にするために,生物学的に有望なバックプロパゲーション代替法を提案する。
本研究では,空間的・時間的信用割当問題の解決における強化学習規則の適用可能性を検討することに注力する。
我々は、グリッドワールド、カートポール、マウンテンカーといった従来のRLドメインに適用することで、2つのアプローチを比較し、対比する。
論文 参考訳(メタデータ) (2020-05-12T17:40:36Z) - A neural network model of perception and reasoning [0.0]
生物学的に一貫した構成原理の単純なセットが神経ネットワークにこれらの能力を与えることを示す。
我々はこれらの原理を、最適化の代わりに概念構築に基づく新しい機械学習アルゴリズムで実装し、説明可能なニューロン活動で推論されるディープニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-02-26T06:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。