Learned Bayesian Cramér-Rao Bound for Unknown Measurement Models Using Score Neural Networks
- URL: http://arxiv.org/abs/2502.00724v2
- Date: Sun, 09 Feb 2025 06:19:51 GMT
- Title: Learned Bayesian Cramér-Rao Bound for Unknown Measurement Models Using Score Neural Networks
- Authors: Hai Victor Habi, Hagit Messer, Yoram Bresler,
- Abstract summary: We propose a fully learned Bayesian Cram'er-Rao bound (LBCRB) that learns both the prior and the measurement distributions.
To achieve this, we introduce a Physics-encoded score neural network which enables us to easily incorporate such domain knowledge into a neural network.
- Score: 13.927943269211589
- License:
- Abstract: The Bayesian Cram\'er-Rao bound (BCRB) is a crucial tool in signal processing for assessing the fundamental limitations of any estimation problem as well as benchmarking within a Bayesian frameworks. However, the BCRB cannot be computed without full knowledge of the prior and the measurement distributions. In this work, we propose a fully learned Bayesian Cram\'er-Rao bound (LBCRB) that learns both the prior and the measurement distributions. Specifically, we suggest two approaches to obtain the LBCRB: the Posterior Approach and the Measurement-Prior Approach. The Posterior Approach provides a simple method to obtain the LBCRB, whereas the Measurement-Prior Approach enables us to incorporate domain knowledge to improve the sample complexity and {interpretability}. To achieve this, we introduce a Physics-encoded score neural network which enables us to easily incorporate such domain knowledge into a neural network. We {study the learning} errors of the two suggested approaches theoretically, and validate them numerically. We demonstrate the two approaches on several signal processing examples, including a linear measurement problem with unknown mixing and Gaussian noise covariance matrices, frequency estimation, and quantized measurement. In addition, we test our approach on a nonlinear signal processing problem of frequency estimation with real-world underwater ambient noise.
Related papers
- Downlink MIMO Channel Estimation from Bits: Recoverability and Algorithm [47.7091447096969]
A major challenge lies in acquiring the downlink channel state information (CSI) at the base station (BS) from limited feedback sent by the user equipment (UE)
In this paper, a simple feedback framework is proposed, where a compression and Gaussian dithering-based quantization strategy is adopted at the UE side, and then a maximum likelihood estimator (MLE) is formulated at the BS side.
The algorithm is carefully designed to integrate a sophisticated harmonic retrieval (HR) solver as subroutine, which turns out to be the key of effectively tackling this hard MLE problem.
arXiv Detail & Related papers (2024-11-25T02:15:01Z) - Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
We prove the first rigorous learning guarantees for neural networks based on unrolling approximate message passing (AMP)
For compressed sensing, we prove that when trained on data drawn from a product prior, the layers of the network converge to the same denoisers used in Bayes AMP.
arXiv Detail & Related papers (2024-09-19T17:56:16Z) - Robust shallow shadows [0.251657752676152]
We present a robust shadow estimation protocol for wide classes of shallow measurement circuits.
We show how to estimate this directly from experimental data using tensor-network tools.
Under the practical constraints of current and near-term noisy quantum devices, our method maximally realizes the potential of shadow estimation with global rotations.
arXiv Detail & Related papers (2024-05-09T18:00:09Z) - Bayesian Cramér-Rao Bound Estimation with Score-Based Models [3.4480437706804503]
The Bayesian Cram'er-Rao bound (CRB) provides a lower bound on the mean square error of any Bayesian estimator under mild regularity conditions.
This work introduces a new data-driven estimator for the CRB using score matching.
arXiv Detail & Related papers (2023-09-28T00:22:21Z) - A Neural Network Warm-Start Approach for the Inverse Acoustic Obstacle
Scattering Problem [7.624866197576227]
We present a neural network warm-start approach for solving the inverse scattering problem.
An initial guess for the optimization problem is obtained using a trained neural network.
The algorithm remains robust to noise in the scattered field measurements and also converges to the true solution for limited aperture data.
arXiv Detail & Related papers (2022-12-16T22:18:48Z) - Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
Deep Learning [24.3370326359959]
We propose to predict with a Gaussian mixture model posterior that consists of a weighted sum of Laplace approximations of independently trained deep neural networks.
We theoretically validate that our approach mitigates overconfidence "far away" from the training data and empirically compare against state-of-the-art baselines on standard uncertainty quantification benchmarks.
arXiv Detail & Related papers (2021-11-05T15:52:48Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics.
In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable.
Our framework is driven by an unsupervised learning approach, where only the noise samples are required.
arXiv Detail & Related papers (2021-01-21T04:48:15Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.