論文の概要: Selective Response Strategies for GenAI
- arxiv url: http://arxiv.org/abs/2502.00729v1
- Date: Sun, 02 Feb 2025 09:27:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:15.871559
- Title: Selective Response Strategies for GenAI
- Title(参考訳): GenAIの選択的対応戦略
- Authors: Boaz Taitler, Omer Ben-Porat,
- Abstract要約: Generative AI(GenAI)の台頭は、Stack Overflowのような人間ベースのフォーラムに大きな影響を与えている。
これにより負のフィードバックループが発生し、GenAIシステムの開発を妨げる。
選択応答がデータ生成プロセスに複合的影響を与える可能性があることを示す。
- 参考スコア(独自算出の注目度): 6.261444979025644
- License:
- Abstract: The rise of Generative AI (GenAI) has significantly impacted human-based forums like Stack Overflow, which are essential for generating high-quality data. This creates a negative feedback loop, hindering the development of GenAI systems, which rely on such data to provide accurate responses. In this paper, we provide a possible remedy: A novel strategy we call selective response. Selective response implies that GenAI could strategically provide inaccurate (or conservative) responses to queries involving emerging topics and novel technologies, thereby driving users to use human-based forums like Stack Overflow. We show that selective response can potentially have a compounding effect on the data generation process, increasing both GenAI's revenue and user welfare in the long term. From an algorithmic perspective, we propose an approximately optimal approach to maximize GenAI's revenue under social welfare constraints. From a regulatory perspective, we derive sufficient and necessary conditions for selective response to improve welfare improvements.
- Abstract(参考訳): Generative AI(GenAI)の台頭は、高品質なデータを生成する上で不可欠なStack Overflowのような、人間ベースのフォーラムに大きな影響を与えている。
これにより負のフィードバックループが発生し、正確なレスポンスを提供するためにそのようなデータに依存するGenAIシステムの開発を妨げる。
本稿では,選択的反応と呼ばれる新しい戦略を提案する。
選択的な応答は、GenAIが新興トピックや新技術に関わるクエリに対して、戦略的に(あるいは保守的な)不正確な応答を提供する可能性があることを意味している。
我々は、選択応答がデータ生成プロセスに複合的な影響を与える可能性を示し、長期的には、GenAIの収益とユーザ福祉の両方を増大させます。
アルゴリズムの観点から,社会福祉制約下でのGenAIの収益を最大化するための,ほぼ最適なアプローチを提案する。
規制の観点から,福祉改善のための選択的対応のための十分な,必要な条件を導出する。
関連論文リスト
- Human Misperception of Generative-AI Alignment: A Laboratory Experiment [0.393259574660092]
我々は、経済的な意思決定の文脈において、生成的人工知能(GenAI)のアライメントに対する人々の認識を研究する。
我々は,GenAIの選択と人間の選択の一致度を過大評価している。
論文 参考訳(メタデータ) (2025-02-20T16:32:42Z) - Generative AI Enabled Matching for 6G Multiple Access [51.00960374545361]
我々は6G多重アクセスをサポートするGenAI対応マッチング生成フレームワークを提案する。
我々のフレームワークは、与えられた条件と事前定義された報酬に基づいて、より効果的なマッチング戦略を生成することができることを示す。
論文 参考訳(メタデータ) (2024-10-29T13:01:26Z) - "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI [55.99010491370177]
我々は、人為的AIの社会的影響をマッピングしない限り、生成AIの社会的影響を徹底的にマッピングすることはできないと論じる。
人為的AIシステムは、人間のように知覚されるアウトプットを生成する傾向が強まっている。
論文 参考訳(メタデータ) (2024-10-11T04:57:41Z) - The Influencer Next Door: How Misinformation Creators Use GenAI [1.1650821883155187]
我々は、非専門家がGenAIをリミックス、再パッケージ、そして(再)コンテンツの制作に利用し、彼らの個人的ニーズや欲求に応えていることに気付きました。
我々は、これらの突発的GenAIの使用が、新しいまたは加速された誤情報障害をいかに生み出すかを分析する。
論文 参考訳(メタデータ) (2024-05-22T11:40:22Z) - Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda [1.8592384822257952]
我々は、XAIがGenAIの台頭とともに重要になった理由とその説明可能性研究の課題について詳述する。
私たちはまた、検証可能性、対話性、セキュリティ、コストといった側面をカバーし、説明が満たすべき新しいデシラタも披露します。
論文 参考訳(メタデータ) (2024-04-15T08:18:16Z) - Prompt Smells: An Omen for Undesirable Generative AI Outputs [4.105236597768038]
我々は、GenAIモデルの適用に関する制約に対処する上で、研究コミュニティに役立つ2つの新しい概念を提案する。
まず、GenAI出力の「望ましさ」の定義と、それに影響を与える3つの要因について述べる。
第2に、Martin Fowler氏のコードの臭いからインスピレーションを得た上で、我々は「急激な臭い」の概念と、それらがGenAI出力の嫌悪性に与える影響について提案する。
論文 参考訳(メタデータ) (2024-01-23T10:10:01Z) - Data Equity: Foundational Concepts for Generative AI [0.0]
GenAIは、デジタルとソーシャルのイノベーションを促進する大きな可能性を約束する。
GenAIは、技術へのアクセスと利用を民主化する可能性がある。
しかし、未確認のままでは、不平等が深まる可能性がある。
論文 参考訳(メタデータ) (2023-10-27T05:19:31Z) - Improving Generalization of Alignment with Human Preferences through
Group Invariant Learning [56.19242260613749]
Reinforcement Learning from Human Feedback (RLHF) は、人間の好みに合わせた反応の生成を可能にする。
以前の研究は、強化学習(RL)がしばしばショートカットを利用して高い報酬を獲得し、挑戦的なサンプルを見落としていることを示している。
本稿では,複数のデータグループやドメインにまたがる一貫したポリシをRLで学習する,新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-18T13:54:15Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - Learning towards Selective Data Augmentation for Dialogue Generation [52.540330534137794]
すべての事例が増補作業に有益である訳ではなく、増補に適した事例は以下の2つの属性に従うべきであると我々は主張する。
応答生成タスクに対してSDA(Selective Data Augmentation framework)を提案する。
論文 参考訳(メタデータ) (2023-03-17T01:26:39Z) - Knowledge Transfer from Answer Ranking to Answer Generation [97.38378660163414]
我々は、訓練されたAS2モデルから知識を伝達することで、GenQAモデルをトレーニングすることを提案する。
また,AS2モデル予測スコアを損失重み付けおよびスコア条件付き入出力整形に用いることを提案する。
論文 参考訳(メタデータ) (2022-10-23T21:51:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。