CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling
- URL: http://arxiv.org/abs/2406.04940v1
- Date: Fri, 7 Jun 2024 13:47:40 GMT
- Title: CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling
- Authors: Matthew Fortier, Mats L. Richter, Oliver Sonnentag, Chris Pal,
- Abstract summary: We present CarbonSense, the first machine learning-ready dataset for data-driven carbon flux modelling.
Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain.
- Score: 9.05128569357374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Terrestrial carbon fluxes provide vital information about our biosphere's health and its capacity to absorb anthropogenic CO$_2$ emissions. The importance of predicting carbon fluxes has led to the emerging field of data-driven carbon flux modelling (DDCFM), which uses statistical techniques to predict carbon fluxes from biophysical data. However, the field lacks a standardized dataset to promote comparisons between models. To address this gap, we present CarbonSense, the first machine learning-ready dataset for DDCFM. CarbonSense integrates measured carbon fluxes, meteorological predictors, and satellite imagery from 385 locations across the globe, offering comprehensive coverage and facilitating robust model training. Additionally, we provide a baseline model using a current state-of-the-art DDCFM approach and a novel transformer based model. Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain. By providing these resources, we aim to lower the barrier to entry for other deep learning researchers to develop new models and drive new advances in carbon flux modelling.
Related papers
- Enhancing Carbon Emission Reduction Strategies using OCO and ICOS data [40.572754656757475]
We propose a methodology to enhance local CO2 monitoring by integrating satellite data from the Orbiting Carbon Observatories (OCO-2 and OCO-3) with ground level observations from the Integrated Carbon Observation System (ICOS) and weather data from the ECMWF Reanalysis v5 (ERA5)
We employ weighted K-nearest neighbor (KNN) with machine learning models to predict ground level CO2 from satellite measurements, achieving a Root Mean Squared Error of 3.92 ppm.
arXiv Detail & Related papers (2024-10-05T21:23:58Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
Federated learning (FL) provides a promising collaborative framework to build a model from distributed clients.
Cloud and edge servers hosting FL clients may exhibit diverse carbon footprints influenced by their geographical locations with varying power sources.
We propose FedGreen, a carbon-aware FL approach to efficiently train models by adopting adaptive model sizes shared with clients.
arXiv Detail & Related papers (2024-04-23T20:37:26Z) - Exploring the Carbon Footprint of Hugging Face's ML Models: A Repository
Mining Study [8.409033836300761]
The study includes the first repository mining study on the Hugging Face Hub API on carbon emissions.
This study seeks to answer two research questions: (1) how do ML model creators measure and report carbon emissions on Hugging Face Hub?, and (2) what aspects impact the carbon emissions of training ML models?
arXiv Detail & Related papers (2023-05-18T17:52:58Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
Machine learning offers a promising method for reducing the time and resource burdens of materials development.
We have developed an end-to-end "discovery cycle" to select new aqueous amines compatible with the commercially viable acid gas scrubbing carbon capture.
The prediction process shows 60% accuracy against experiment for both material parameters and 80% for a single parameter on an external test set.
arXiv Detail & Related papers (2023-03-24T18:32:38Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Joint Study of Above Ground Biomass and Soil Organic Carbon for Total
Carbon Estimation using Satellite Imagery in Scotland [0.0]
Land Carbon verification has long been a challenge in the carbon credit market.
Remote sensing techniques enable new approaches to monitor changes in Above Ground Biomass (AGB) and Soil Organic Carbon (SOC)
arXiv Detail & Related papers (2022-05-08T20:23:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.