Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis
- URL: http://arxiv.org/abs/2502.00935v2
- Date: Mon, 10 Feb 2025 05:37:06 GMT
- Title: Generalizing Safety Beyond Collision-Avoidance via Latent-Space Reachability Analysis
- Authors: Kensuke Nakamura, Lasse Peters, Andrea Bajcsy,
- Abstract summary: Hamilton-Jacobi (J) reachability is a rigorous framework that enables robots to simultaneously detect unsafe states and generate actions.
We propose La-space Safety Filters, a generalization of Hamilton-Jacobi reachability that operates directly on raw observation data.
- Score: 6.267574471145217
- License:
- Abstract: Hamilton-Jacobi (HJ) reachability is a rigorous mathematical framework that enables robots to simultaneously detect unsafe states and generate actions that prevent future failures. While in theory, HJ reachability can synthesize safe controllers for nonlinear systems and nonconvex constraints, in practice, it has been limited to hand-engineered collision-avoidance constraints modeled via low-dimensional state-space representations and first-principles dynamics. In this work, our goal is to generalize safe robot controllers to prevent failures that are hard -- if not impossible -- to write down by hand, but can be intuitively identified from high-dimensional observations: for example, spilling the contents of a bag. We propose Latent Safety Filters, a latent-space generalization of HJ reachability that tractably operates directly on raw observation data (e.g., RGB images) by performing safety analysis in the latent embedding space of a generative world model. This transforms nuanced constraint specification to a classification problem in latent space and enables reasoning about dynamical consequences that are hard to simulate. In simulation and hardware experiments, we use Latent Safety Filters to safeguard arbitrary policies (from generative policies to direct teleoperation) from complex safety hazards, like preventing a Franka Research 3 manipulator from spilling the contents of a bag or toppling cluttered objects.
Related papers
- In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - ISAACS: Iterative Soft Adversarial Actor-Critic for Safety [0.9217021281095907]
This work introduces a novel approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems.
A safety-seeking fallback policy is co-trained with an adversarial "disturbance" agent that aims to invoke the worst-case realization of model error.
While the learned control policy does not intrinsically guarantee safety, it is used to construct a real-time safety filter.
arXiv Detail & Related papers (2022-12-06T18:53:34Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving [7.355977594790584]
We consider the safety-oriented performance of 3D object detectors in autonomous driving contexts.
We present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement.
We incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models.
arXiv Detail & Related papers (2022-09-21T14:03:08Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Safe Reinforcement Learning Using Black-Box Reachability Analysis [20.875010584486812]
Reinforcement learning (RL) is capable of sophisticated motion planning and control for robots in uncertain environments.
To justify widespread deployment, robots must respect safety constraints without sacrificing performance.
We propose a Black-box Reachability-based Safety Layer (BRSL) with three main components.
arXiv Detail & Related papers (2022-04-15T10:51:09Z) - BarrierNet: A Safety-Guaranteed Layer for Neural Networks [50.86816322277293]
BarrierNet allows the safety constraints of a neural controller be adaptable to changing environments.
We evaluate them on a series of control problems such as traffic merging and robot navigations in 2D and 3D space.
arXiv Detail & Related papers (2021-11-22T15:38:11Z) - Failing with Grace: Learning Neural Network Controllers that are
Boundedly Unsafe [18.34490939288318]
We consider the problem of learning a feed-forward neural network (NN) controller to safely steer an arbitrarily shaped robot in a compact workspace.
We propose an approach that lifts such assumptions on the data that are hard to satisfy in practice.
We provide a simulation study that verifies the efficacy of the proposed scheme.
arXiv Detail & Related papers (2021-06-22T15:51:52Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
This manuscript proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safety-guarantees.
The proposed approach deals with the motion, probabilistic safety, and online computation constraints by: (i) mapping the surroundings to build an uncertainty-aware representation of the environment, and (ii) iteratively (re)planning to goal that are kinodynamically feasible and probabilistically safe through a multi-layered sampling-based planner in the belief space.
arXiv Detail & Related papers (2020-04-26T08:53:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.