論文の概要: ModServe: Scalable and Resource-Efficient Large Multimodal Model Serving
- arxiv url: http://arxiv.org/abs/2502.00937v2
- Date: Fri, 21 Mar 2025 16:53:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 15:40:09.933036
- Title: ModServe: Scalable and Resource-Efficient Large Multimodal Model Serving
- Title(参考訳): ModServe: スケーラブルでリソース効率の良い大規模マルチモーダルモデルの実現
- Authors: Haoran Qiu, Anish Biswas, Zihan Zhao, Jayashree Mohan, Alind Khare, Esha Choukse, Íñigo Goiri, Zeyu Zhang, Haiying Shen, Chetan Bansal, Ramachandran Ramjee, Rodrigo Fonseca,
- Abstract要約: 大規模なマルチモーダルモデル(LMM)は、画像、ビデオ、音声をテキストを超えて理解する能力を示す。
本稿では,6つの代表的なオープンソースモデルに対して,デコーダのみとクロスアテンションという,2つの著名なLMMアーキテクチャを包括的に解析する。
本稿では,モジュール型LMMサービスシステムであるModServeを提案する。
- 参考スコア(独自算出の注目度): 19.388562622309838
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large multimodal models (LMMs) demonstrate impressive capabilities in understanding images, videos, and audio beyond text. However, efficiently serving LMMs in production environments poses significant challenges due to their complex architectures and heterogeneous characteristics across their multi-stage inference pipelines. We present the first comprehensive systems analysis of two prominent LMM architectures, decoder-only and cross-attention, across six representative open-source models, revealing key systems design implications. We also present an in-depth analysis of production LMM inference traces, uncovering unique workload characteristics, including variable, heavy-tailed request distributions and bursty traffic patterns. Based on these insights, we propose ModServe, a modular LMM serving system that decouples stages for independent optimization and adaptive scaling. ModServe dynamically reconfigures stages and handles bursty traffic with modality-aware scheduling and autoscaling to meet tail latency SLOs while minimizing costs. ModServe achieves 3.3-5.5x higher throughput (leading to 25-41.3% cost saving) while meeting SLOs on a 128-GPU cluster with production traces.
- Abstract(参考訳): 大規模なマルチモーダルモデル(LMM)は、画像、ビデオ、音声をテキストを超えて理解する能力を示す。
しかし, 実運用環境におけるLMMの効率的な提供は, 複雑なアーキテクチャと多段推論パイプライン間の不均一な特性のため, 重大な課題を生んでいる。
我々は,6つの代表的なオープンソースモデルに対して,デコーダのみとクロスアテンションという,2つの著名なLMMアーキテクチャを包括的に解析し,重要な設計上の意味を明らかにした。
また、本研究では、可変、重み付き要求分布、バースト的なトラフィックパターンを含む、ユニークなワークロード特性を明らかにするために、生産LMM推定トレースの詳細な分析を行う。
これらの知見に基づき,モジュール型LMMサービスシステムであるModServeを提案する。
ModServeは動的にステージを再構成し、モダリティを考慮したスケジューリングと自動スケーリングでバーストトラフィックを処理する。
ModServeのスループットは3.3-5.5倍(25-41.3%のコスト削減)で、SLOを128-GPUクラスタで実行している。
関連論文リスト
- HaploVL: A Single-Transformer Baseline for Multi-Modal Understanding [67.24430397016275]
そこで本稿では,マルチモーダル入力を早期に融合し,自動回帰方式で視覚的指示に応答できる新しいアーリーフュージョンLMMを提案する。
提案モデルでは,1つの変圧器を用いた他のLMMと比較して優れた性能を示し,合成LMMによる性能ギャップを著しく狭めている。
論文 参考訳(メタデータ) (2025-03-12T06:01:05Z) - DNN-Powered MLOps Pipeline Optimization for Large Language Models: A Framework for Automated Deployment and Resource Management [0.0]
本研究では、Deep Neural Networks(DNN)を活用してMLOpsパイプラインをLarge Language Models(LLM)に最適化する新しいフレームワークを提案する。
当社のアプローチでは,最適なパフォーマンスとコスト効率を維持しつつ,デプロイメント決定やリソース割り当て,パイプライン最適化を自動化するインテリジェントシステムを導入しています。
論文 参考訳(メタデータ) (2025-01-14T14:15:32Z) - LLaVA Steering: Visual Instruction Tuning with 500x Fewer Parameters through Modality Linear Representation-Steering [30.51487692912812]
MLLM(Multimodal Large Language Models)は、大規模言語モデル(LLM)に視覚表現を統合することで、視覚的タスクを大幅に進歩させる。
目的を達成するためにモダリティリニア表現ステアリング(MoReS)を導入する。
MoReSはモデル全体の固有のモダリティを効果的に再バランスさせ、そこでキーとなるアイデアは、各モデル層をまたいだ視覚部分空間の線形変換を通じて視覚表現を操ることである。
論文 参考訳(メタデータ) (2024-12-16T21:14:11Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - xGen-MM (BLIP-3): A Family of Open Large Multimodal Models [157.44696790158784]
本稿では,LMM(Large Multimodal Models)を開発するためのフレームワークであるxGen-MMを紹介する。
このフレームワークは、慎重にキュレートされたデータセット、トレーニングレシピ、モデルアーキテクチャ、結果のLMMスイートで構成されている。
私たちのモデルは、シングルイメージとマルチイメージのベンチマークを含む、さまざまなタスクにわたって厳格な評価を受けています。
論文 参考訳(メタデータ) (2024-08-16T17:57:01Z) - SOLO: A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
我々はvisiOn-Language mOdelingのための単一変換器SOLOを提案する。
SOLOのような統一された単一トランスフォーマーアーキテクチャは、LVLMにおけるこれらのスケーラビリティ上の懸念に効果的に対処する。
本稿では,オープンソースの7B LVLMであるSOLOの開発のための,最初のオープンソーストレーニングレシピを紹介する。
論文 参考訳(メタデータ) (2024-07-08T22:40:15Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures [12.703947839247693]
拡散モデルは強力な深層生成ツールとして登場し、様々な応用に優れている。
しかし、その顕著な生成性能は、遅いトレーニングとサンプリングによって妨げられている。
これは、広範囲の前方および逆拡散軌道を追跡する必要があるためである。
本稿では,これらの課題に対処するための経験的知見から着想を得た多段階フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T17:48:09Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Can SAM Boost Video Super-Resolution? [78.29033914169025]
単純な有効モジュールであるSAM-guidEd refinEment Module (SEEM)を提案する。
この軽量プラグインモジュールは、セマンティック・アウェア機能の生成にアテンションメカニズムを活用するように設計されている。
我々はSEEMをEDVRとBasicVSRの2つの代表的手法に適用し、最小限の実装労力で継続的に性能を向上する。
論文 参考訳(メタデータ) (2023-05-11T02:02:53Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
本稿では,多種多様なモダリティを含む高モダリティシナリオに対する効率的な表現学習について検討する。
単一のモデルであるHighMMTは、テキスト、画像、オーディオ、ビデオ、センサー、プロプレセプション、スピーチ、時系列、セット、テーブル)と5つの研究領域から15のタスクをスケールする。
論文 参考訳(メタデータ) (2022-03-02T18:56:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。