A Wearable Device Dataset for Mental Health Assessment Using Laser Doppler Flowmetry and Fluorescence Spectroscopy Sensors
- URL: http://arxiv.org/abs/2502.00973v1
- Date: Mon, 03 Feb 2025 00:51:10 GMT
- Title: A Wearable Device Dataset for Mental Health Assessment Using Laser Doppler Flowmetry and Fluorescence Spectroscopy Sensors
- Authors: Minh Ngoc Nguyen, Khai Le-Duc, Tan-Hanh Pham, Trang Nguyen, Quang Minh Luu, Ba Kien Tran, Truong-Son Hy, Viktor Dremin, Sergei Sokolovsky, Edik Rafailov,
- Abstract summary: We introduce a novel method to predict mental health by building machine learning models for a non-invasive wearable device equipped with Laser Doppler Flowmetry (LDF) and Fluorescence Spectroscopy (FS) sensors.
We present the corresponding dataset to predict mental health, e.g. depression, anxiety, and stress levels via the DAS-21 questionnaire.
Our results suggest that females, younger individuals and those with a higher Body Mass Index (BMI) or heart rate have a greater likelihood of experiencing mental health conditions like stress and anxiety.
- Score: 1.4137557519215906
- License:
- Abstract: In this study, we introduce a novel method to predict mental health by building machine learning models for a non-invasive wearable device equipped with Laser Doppler Flowmetry (LDF) and Fluorescence Spectroscopy (FS) sensors. Besides, we present the corresponding dataset to predict mental health, e.g. depression, anxiety, and stress levels via the DAS-21 questionnaire. To our best knowledge, this is the world's largest and the most generalized dataset ever collected for both LDF and FS studies. The device captures cutaneous blood microcirculation parameters, and wavelet analysis of the LDF signal extracts key rhythmic oscillations. The dataset, collected from 132 volunteers aged 18-94 from 19 countries, explores relationships between physiological features, demographics, lifestyle habits, and health conditions. We employed a variety of machine learning methods to classify stress detection, in which LightGBM is identified as the most effective model for stress detection, achieving a ROC AUC of 0.7168 and a PR AUC of 0.8852. In addition, we also incorporated Explainable Artificial Intelligence (XAI) techniques into our analysis to investigate deeper insights into the model's predictions. Our results suggest that females, younger individuals and those with a higher Body Mass Index (BMI) or heart rate have a greater likelihood of experiencing mental health conditions like stress and anxiety. All related code and data are published online: https://github.com/leduckhai/Wearable_LDF-FS.
Related papers
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Machine Learning-based Estimation of Respiratory Fluctuations in a Healthy Adult Population using BOLD fMRI and Head Motion Parameters [39.96015789655091]
In many fMRI studies, respiratory signals are often missing or of poor quality.
It could be highly beneficial to have a tool to extract respiratory variation (RV) waveforms directly from fMRI data without the need for peripheral recording devices.
This study proposes a CNN model for reconstruction of RV waveforms using head motion parameters and BOLD signals.
arXiv Detail & Related papers (2024-04-30T21:53:11Z) - Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes [3.2458203725405976]
This work presents a novel approach leveraging digital stethoscope technology for automatic respiratory disease classification and biometric analysis.
By leveraging one of the largest publicly available medical database of respiratory sounds, we train machine learning models to classify various respiratory health conditions.
Our approach achieves high accuracy in both binary classification (89% balanced accuracy for healthy vs. diseased) and multi-class classification (72% balanced accuracy for specific diseases like pneumonia and COPD)
arXiv Detail & Related papers (2023-09-12T23:54:00Z) - Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation
of rPPG [2.82697733014759]
r (pg photoplethysmography) is a technology that measures and analyzes BVP (Blood Volume Pulse) by using the light absorption characteristics of hemoglobin captured through a camera.
This study is to provide a framework to evaluate various r benchmarking techniques across a wide range of datasets for fair evaluation and comparison.
arXiv Detail & Related papers (2023-07-24T09:35:47Z) - Classification of Stress via Ambulatory ECG and GSR Data [0.0]
This work empirically assesses several approaches to detect stress using physiological data recorded in an ambulatory setting with self-reported stress annotations.
The optimal stress detection approach achieves 90.77% classification accuracy, 91.24 F1-submission, 90.42 Sensitivity and 91.08 Specificity.
arXiv Detail & Related papers (2022-07-19T15:57:14Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Fine-grain atlases of functional modes for fMRI analysis [21.281361743023403]
Population imaging markedly increased the size of functional-imaging datasets, shedding new light on the neural basis of inter-individual differences.
For this reason, brain images are typically summarized in a few signals, for instance reducing voxel-level measures with brain atlases or functional modes.
We contribute finely-resolved atlases of functional modes, comprising from 64 to 1024 networks.
These dictionaries of functional modes are trained on millions of fMRI functional brain volumes of total size 2.4TB, spanned over 27 studies and many research groups.
arXiv Detail & Related papers (2020-03-05T12:04:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.