論文の概要: ChartCitor: Multi-Agent Framework for Fine-Grained Chart Visual Attribution
- arxiv url: http://arxiv.org/abs/2502.00989v1
- Date: Mon, 03 Feb 2025 02:00:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:37.800279
- Title: ChartCitor: Multi-Agent Framework for Fine-Grained Chart Visual Attribution
- Title(参考訳): ChartCitor: 細粒度チャートの視覚属性のためのマルチエージェントフレームワーク
- Authors: Kanika Goswami, Puneet Mathur, Ryan Rossi, Franck Dernoncourt,
- Abstract要約: グラフ画像内の支持証拠を識別し,きめ細かなバウンディングボックスの引用を提供するマルチエージェントフレームワークであるChartCitorを提案する。
このシステムは、LCMエージェントを編成して、チャートからテーブルへの抽出、回答の修正、テーブル拡張、事前フィルタリングと再ランク付けによるエビデンス検索、テーブルからチャートへのマッピングを行う。
- 参考スコア(独自算出の注目度): 47.79080056618323
- License:
- Abstract: Large Language Models (LLMs) can perform chart question-answering tasks but often generate unverified hallucinated responses. Existing answer attribution methods struggle to ground responses in source charts due to limited visual-semantic context, complex visual-text alignment requirements, and difficulties in bounding box prediction across complex layouts. We present ChartCitor, a multi-agent framework that provides fine-grained bounding box citations by identifying supporting evidence within chart images. The system orchestrates LLM agents to perform chart-to-table extraction, answer reformulation, table augmentation, evidence retrieval through pre-filtering and re-ranking, and table-to-chart mapping. ChartCitor outperforms existing baselines across different chart types. Qualitative user studies show that ChartCitor helps increase user trust in Generative AI by providing enhanced explainability for LLM-assisted chart QA and enables professionals to be more productive.
- Abstract(参考訳): 大規模言語モデル(LLM)は、チャート質問応答タスクを実行できるが、しばしば未検証の幻覚応答を生成する。
既存の応答属性法は、視覚的意味的コンテキストの制限、複雑な視覚的テキストアライメントの要求、複雑なレイアウトをまたいだボックス予測の難しさにより、ソースチャートの応答のグラウンド化に苦慮している。
グラフ画像内の支持証拠を識別し,きめ細かなバウンディングボックスの引用を提供するマルチエージェントフレームワークであるChartCitorを提案する。
このシステムは、LCMエージェントを編成して、チャートからテーブルへの抽出、回答の修正、テーブル拡張、事前フィルタリングと再ランク付けによるエビデンス検索、テーブルからチャートへのマッピングを行う。
ChartCitorは、さまざまなチャートタイプで既存のベースラインを上回ります。
質的なユーザスタディによると、ChartCitorは、LCM支援チャートQAの強化された説明可能性を提供し、プロフェッショナルがより生産的になることを可能にすることで、ジェネレーティブAIのユーザ信頼を高めるのに役立つ。
関連論文リスト
- VProChart: Answering Chart Question through Visual Perception Alignment Agent and Programmatic Solution Reasoning [13.011899331656018]
VProChartは、CQA(Chart Question Answering)の課題に対処するために設計された新しいフレームワークである。
軽量な視覚知覚アライメントエージェント(VPAgent)と,プログラム型ソリューション推論アプローチを統合している。
VProChartは既存のメソッドよりも優れており、チャートによる理解と推論の能力を強調している。
論文 参考訳(メタデータ) (2024-09-03T07:19:49Z) - MSG-Chart: Multimodal Scene Graph for ChartQA [11.828192162922436]
グラフに明示的に表示されていない基礎データのパターンを持つチャート要素の複雑な分布のため、ChartQA(Automatic Chart Question Answering)は難しい。
チャート要素とそれらのパターンの関係を明示的に表すために、チャートのための共同マルチモーダルシーングラフを設計する。
提案するマルチモーダルシーングラフには視覚グラフとテキストグラフが含まれており,そのグラフから構造的および意味的知識を共同でキャプチャする。
論文 参考訳(メタデータ) (2024-08-09T04:11:23Z) - Advancing Chart Question Answering with Robust Chart Component Recognition [18.207819321127182]
本稿では,バー,ライン,パイ,タイトル,伝説,軸といったコンポーネントを正確に識別し,分類することで,チャートコンポーネントの認識を強化する統一フレームワークを提案する。
また,Chartformerによって符号化されたチャート機能に与えられた質問を融合させ,正しい回答の根拠となる質問のガイダンスを活用する,新しい質問誘導型変形型コ・アテンション機構を提案する。
論文 参考訳(メタデータ) (2024-07-19T20:55:06Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning [54.82612435284695]
我々は、チャート領域における既製のマルチモーダル言語モデル(MLLM)の能力をベンチマークする。
ChartXは18種類のチャートタイプ,7つのチャートタスク,22のディシプリナトピック,高品質なチャートデータを含むマルチモーダルな評価セットである。
我々は、解釈可能なパターンに強く依存するマルチモーダルタスクに対する新しい視点を提供するため、ChartVLMを開発した。
論文 参考訳(メタデータ) (2024-02-19T14:48:23Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistantは、ユニバーサルチャートの理解と推論のためのビジョン言語モデルである。
2段階のトレーニングプロセスを経て、チャートとテキストの調整のために、チャートからテーブルへのパースを事前トレーニングする。
実験により, 最先端UniChart法とChartllama法に比較して, 顕著な性能向上が得られた。
論文 参考訳(メタデータ) (2024-01-04T17:51:48Z) - StructChart: On the Schema, Metric, and Augmentation for Visual Chart Understanding [54.45681512355684]
現在のチャート関連タスクは、ビジュアルチャートから情報を抽出するチャート認識か、抽出されたデータに基づいてチャート推論にフォーカスする。
我々はStructChartを紹介した。StructChartはStruct Triplet Representations(STR)を利用して、統一的でラベル効率のよいアプローチを実現する新しいフレームワークである。
論文 参考訳(メタデータ) (2023-09-20T12:51:13Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
ChartReaderは、チャートのデレンダリングと理解タスクをシームレスに統合する統合フレームワークです。
提案手法には,トランスフォーマーに基づくチャートコンポーネント検出モジュールと,チャートからXまでのタスクに対する事前学習型視覚言語モデルが組み込まれている。
提案するフレームワークは,チャート解析に係わる作業を大幅に削減し,ユニバーサルチャート理解モデルへの一歩を踏み出すことができる。
論文 参考訳(メタデータ) (2023-04-05T00:25:27Z) - Classification-Regression for Chart Comprehension [16.311371103939205]
チャート質問応答(CQA)は、チャート理解を評価するために用いられるタスクである。
分類と回帰を共同で学習する新しいモデルを提案する。
私たちのモデルのエッジは、特に語彙外回答の質問に重点を置いています。
論文 参考訳(メタデータ) (2021-11-29T18:46:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。