Impact of Fixing Spins in a Quantum Annealer with Energy Rescaling
- URL: http://arxiv.org/abs/2502.01008v1
- Date: Mon, 03 Feb 2025 03:01:08 GMT
- Title: Impact of Fixing Spins in a Quantum Annealer with Energy Rescaling
- Authors: Tomohiro Hattori, Hirotaka Irie, Tadashi Kadowaki, Shu Tanaka,
- Abstract summary: This study examines the relationship between fixing spins, a promising size-reduction method, and the effects of energy rescaling.
Numerical simulations and experiments conducted on a quantum annealer demonstrate that the fixing spins method enhances quantum annealing performance.
- Score: 1.0937094979510213
- License:
- Abstract: Quantum annealing is a promising algorithm for solving combinatorial optimization problems. However, various hardware restrictions significantly impede its efficient performance. Size-reduction methods provide an effective approach for addressing large-scale problems but often introduce additional challenges. A notable hardware restriction is the limited number of decision variables quantum annealing can handle compared to the size of the problem. Moreover, when employing size-reduction methods, the interactions and local magnetic fields in the Ising model--used to represent the combinatorial optimization problem--can become excessively large, making them difficult to implement on hardware. Although prior studies suggest that energy rescaling impacts the performance of quantum annealing, its interplay with size-reduction methods remains unexplored. This study examines the relationship between fixing spins, a promising size-reduction method, and the effects of energy rescaling. Numerical simulations and experiments conducted on a quantum annealer demonstrate that the fixing spins method enhances quantum annealing performance while preserving the spin-chain embedding for a homogeneous, fully connected ferromagnetic Ising model.
Related papers
- Entanglement-assisted variational algorithm for discrete optimization problems [0.0]
discrete optimization problems often exact intractable, necessitating the use of approximate methods.
Heuristics inspired by classical physics have long played a central role in this domain.
quantum annealing has emerged as a promising alternative, with hardware implementations realized on both analog and digital quantum devices.
arXiv Detail & Related papers (2025-01-15T19:00:10Z) - Advantages of fixing spins in quantum annealing [1.0937094979510213]
Size-reduction methods are used to treat large-scale optimization problems that cannot be input directly into a quantum annealer.
Various size-reduction methods using fixing spins have been proposed as quantum-classical hybrid methods to obtain solutions.
arXiv Detail & Related papers (2024-10-29T10:30:53Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Contextual Subspace Variational Quantum Eigensolver Calculation of the Dissociation Curve of Molecular Nitrogen on a Superconducting Quantum Computer [0.06990493129893112]
We present an experimental demonstration of the Contextual Subspace Variational Quantum Eigensolver on superconducting quantum hardware.
In particular, we compute the potential energy curve for molecular nitrogen, where a dominance of static correlation in the dissociation limit proves challenging for many conventional quantum chemistry techniques.
Our quantum simulations retain good agreement with the full configuration interaction energy in the chosen STO-3G basis, outperforming all benchmarked single-reference wavefunction techniques in capturing the bond-breaking appropriately.
arXiv Detail & Related papers (2023-12-07T16:05:52Z) - Equilibrium Quantum Impurity Problems via Matrix Product State Encoding
of the Retarded Action [0.0]
In this Article, we explore the computational power of representing the retarded action as matrix product state (RAMPS)
We demonstrate that the RAMPS approach reliably reaches the Kondo regime for a range of interaction strengths $U$, with a numerical error scaling as a weak power law with inverse temperature.
Our results show that the RAMPS approach offers promise as an alternative tool for studying quantum impurity problems in regimes that challenge established methods.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Quantum annealing with twisted fields [0.0]
We propose a method for suppressing the effects of decoherence and non-adiabatic transition.
Our results can pave the way to a new approach for realizing practical quantum annealing.
arXiv Detail & Related papers (2021-11-30T11:00:44Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.