Electrically induced bulk and edge excitations in the fractional quantum Hall regime
- URL: http://arxiv.org/abs/2502.01052v1
- Date: Mon, 03 Feb 2025 04:51:37 GMT
- Title: Electrically induced bulk and edge excitations in the fractional quantum Hall regime
- Authors: Quentin France, Yunhyeon Jeong, Akinori Kamiyama, Takaaki Mano, Ken-ichi Sasaki, Masahiro Hotta, Go Yusa,
- Abstract summary: We investigate the collective excitations in both the edge and bulk via photoluminescence spectral energy shifts.
Introducing an offset in the voltage pulse significantly enhances the excitation signal.
Results highlight the topological link between edge and bulk states, providing a novel approach to exploring solid-state analogs of quantum gravity.
- Score: 0.0
- License:
- Abstract: We apply a voltage pulse to electrically excite the incompressible region of a two-dimensional electron liquid in the $\nu=2/3$ fractional quantum Hall state and investigate the collective excitations in both the edge and bulk via photoluminescence spectral energy shifts. Introducing an offset in the voltage pulse significantly enhances the excitation signal. Real-space and time-resolved measurements reveal the dynamics of the bulk excitations, with an estimated group velocity of approximately $3 \times 10^4$ m/s. These bulk excitations align well with the magneto-plasmon model. Our results highlight the topological link between edge and bulk states, providing a novel approach to exploring solid-state analogs of quantum gravity.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dipole coupling of a bilayer graphene quantum dot to a high-impedance
microwave resonator [0.14908922253160745]
superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure.
We achieve sensitive and fast detection with a signal-to-noise ratio of 3.5 within 1 $mumathrms$ integration time.
Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
arXiv Detail & Related papers (2023-12-22T11:59:20Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Strong coupling of a Gd$^{3+}$ multilevel spin system to an on-chip
superconducting resonator [0.0]
We report the realization of a strong coupling between a Gd$3+$ spin ensemble hosted in a scheelite (CaWO$_4$) single crystal.
The interaction is well described by the Dicke model and the crystal-field Hamiltonian of the multilevel spin system.
arXiv Detail & Related papers (2022-10-10T23:51:55Z) - Probing Electron-Hole Coherence in Strongly-Driven Solids [2.2182171526013774]
High-harmonic generation (HHG) is a coherent optical process in which the incident photon energy is up-converted to the multiples of its initial energy.
In solids, under the influence of a strong laser field, electron-hole (e-h) pairs are generated and subsequently driven to high energy and momentum.
arXiv Detail & Related papers (2021-09-09T18:39:51Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Vectorial polaritons in the quantum motion of a levitated nanosphere [0.0]
We show the generation of phonon-polaritons in the quantum motion of an optically-levitated nanosphere.
Our results pave the way to novel protocols for quantum information transfer between photonic and phononic components.
arXiv Detail & Related papers (2020-12-30T18:26:28Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.