論文の概要: An Inquiry into Datacenter TCO for LLM Inference with FP8
- arxiv url: http://arxiv.org/abs/2502.01070v3
- Date: Tue, 29 Apr 2025 10:17:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 20:17:25.664652
- Title: An Inquiry into Datacenter TCO for LLM Inference with FP8
- Title(参考訳): FP8を用いたLCM推論のためのデータセンターTCOの検討
- Authors: Jiwoo Kim, Joonhyung Lee, Gunho Park, Byeongwook Kim, Se Jung Kwon, Dongsoo Lee, Youngjoo Lee,
- Abstract要約: 大規模言語モデル(LLM)の計算特性と制約をTCOの観点から解析する。
多様な運用要件に応じて,CSPがAIアクセラレータを比較選択できる汎用フレームワークを提案する。
- 参考スコア(独自算出の注目度): 7.910301381209274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) continue to scale, their inference demands present significant challenges, particularly due to the high power consumption of AI accelerators in datacenters. These facilities require specialized cooling and power management systems, substantially increasing the total cost of ownership (TCO) for cloud service providers (CSPs). In this work, we analyze the computational characteristics and constraints of LLM inference from a TCO perspective, focusing on two representative accelerators: the Gaudi 2 and NVIDIA H100. We present a generalizable framework that enables CSPs to compare and select AI accelerators according to diverse operational requirements. Using this model, we analyze the impact of FP8 precision and LLM inference workload characteristics as key factors influencing TCO. We investigate FP8 quantization, which is gaining adoption in LLM training, as a technique to improve inference throughput while maintaining cost efficiency. Furthermore, our analysis of LLM inference workloads reveals that performance on thin GEMMs, which dominate the decode phase, can have a greater impact than theoretical hardware peak performance. By studying the interaction between power consumption, quantization strategies, and hardware architecture, we offer insights that support informed deployment decisions and guide future accelerator designs to improve the TCO of LLM inference.
- Abstract(参考訳): 大規模言語モデル(LLM)のスケールアップが進むにつれて、その推論要求は、特にデータセンタにおけるAIアクセラレータの高消費電力化による、重大な課題を呈する。
これらの施設は特別な冷却と電力管理システムを必要としており、クラウドサービスプロバイダ(CSP)の総所有コスト(TCO)を大幅に高めている。
本稿では,TCO の観点から LLM 推論の計算特性と制約を解析し,Gaudi 2 と NVIDIA H100 の2つの代表的な加速器に着目した。
多様な運用要件に応じて,CSPがAIアクセラレータを比較選択できる汎用フレームワークを提案する。
本モデルを用いて,FP8精度とLLM推論負荷特性の影響をTCOに影響を与える重要な要因として分析する。
コスト効率を維持しつつ、推論スループットを向上させる手法として、LLMトレーニングで採用されているFP8量子化について検討する。
さらに,LLM推論負荷の解析により,デコードフェーズを支配している薄型GEMMの性能が,理論ハードウェアのピーク性能よりも大きな影響を与えることが明らかとなった。
電力消費,量子化戦略,ハードウェアアーキテクチャ間の相互作用を研究することにより,情報提供による展開決定を支援する洞察を与え,将来の加速器設計を指導し,LLM推論のTCOを改善する。
関連論文リスト
- Deploying Large AI Models on Resource-Limited Devices with Split Federated Learning [39.73152182572741]
本稿では、SFLAM(Quantized Split Federated Fine-Tuning Large AI Model)と呼ばれる新しいフレームワークを提案する。
エッジデバイスとサーバ間のトレーニング負荷を分割することで、SFLAMはデバイス上の大規模なモデルの操作を容易にすることができる。
SFLAMは、トレーニング効率を高めるために、量子化管理、電力制御、帯域幅割り当て戦略を取り入れている。
論文 参考訳(メタデータ) (2025-04-12T07:55:11Z) - Sustainable LLM Inference for Edge AI: Evaluating Quantized LLMs for Energy Efficiency, Output Accuracy, and Inference Latency [6.306413686006502]
我々はOllamaライブラリから28の量子化大言語モデル(LLM)を包括的に分析する。
我々は、複数の量子化レベルおよびタスクタイプにわたるエネルギー効率、推論性能、出力精度を評価する。
その結果,異なる量子化設定におけるエネルギー効率,推定速度,精度のトレードオフが明らかになった。
論文 参考訳(メタデータ) (2025-04-04T11:29:30Z) - Cost-Optimal Grouped-Query Attention for Long-Context LLMs [64.90662568387683]
効率的なTransformerベースの大規模言語モデル(LLM)の構築が最近研究の焦点となっている。
モデル性能,計算コスト,メモリコストの面で,パラメータサイズ,コンテキスト長,アテンションヘッド構成の異なるモデルを比較した。
本研究は, 十分に長いシーケンスを処理した場合, より少ないアテンションヘッドを持つモデルでは, 計算コストとメモリコストの低減を図りながら, 損失を低減できることを示した。
論文 参考訳(メタデータ) (2025-03-12T17:50:42Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Optimizing Large Language Model Training Using FP4 Quantization [73.55459961002371]
量子化トレーニングは、低ビット演算によるコスト削減を可能にすることで、有望なソリューションを提供する。
この研究は、大規模言語モデル(LLM)のための最初のFP4トレーニングフレームワークを紹介します。
論文 参考訳(メタデータ) (2025-01-28T18:04:50Z) - Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings [1.5749416770494706]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクにおいて大幅に改善されている。
LLMはリソース集約型であり、トレーニングと推論の両方に広範な計算資源を必要とする。
導入が加速するにつれて、LLMの持続性は重要な問題となっている。
論文 参考訳(メタデータ) (2025-01-14T16:02:33Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated Learning(FL)は、分散プライベートデータセットを使用して、トレーニング済みの大規模言語モデル(LLM)を微調整するための、プライバシ保護ソリューションを提供する。
本稿では、知識蒸留(KD)とスプリットラーニング(SL)を統合し、これらの問題を緩和する3つの先進的連合LLM(FedLLM)フレームワークの比較分析を行う。
論文 参考訳(メタデータ) (2025-01-08T11:37:06Z) - eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
大言語モデル(LLMs)は人工知能(AI)の転換期を告げる
本稿では, LLM推論の運用効率と費用対効果を高める効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T22:50:02Z) - "Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization [67.3213104337679]
我々は,学術ベンチマークや実世界のタスクにまたがる一般的な量子化形式を評価する。
W4A16は同期デプロイメントと中間層アーキテクチャの非同期デプロイメントに最適なコスト効率を提供する。
論文 参考訳(メタデータ) (2024-11-04T18:21:59Z) - Scaling FP8 training to trillion-token LLMs [26.195547788434908]
最大2兆トークンのデータセット上でFP8精度を使用して、大規模な言語モデルをトレーニングします。
我々は,FP8トレーニングにおいて,より短い期間で観察できない重大な障害を発見した。
Smooth-SwiGLUは機能変更なしに安定したFP8トレーニングを実現する新しい修正である。
論文 参考訳(メタデータ) (2024-09-19T07:15:58Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
論文 参考訳(メタデータ) (2024-09-03T07:01:46Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Assessing Economic Viability: A Comparative Analysis of Total Cost of Ownership for Domain-Adapted Large Language Models versus State-of-the-art Counterparts in Chip Design Coding Assistance [10.364901568556435]
本稿では,ドメイン適応型大言語モデル (LLM) と最先端LLM (SoTA) の比較検討を行った。
論文 参考訳(メタデータ) (2024-04-12T23:37:56Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - FP8-LM: Training FP8 Large Language Models [47.17804713425323]
本稿では,大規模言語モデルの学習のためのFP8自動混合精度フレームワークを提案する。
実験の結果,H100 GPUプラットフォーム上でのGPT-175Bモデルのトレーニングにおいて,我々のFP8混合精度トレーニングフレームワークは,実際のメモリ使用量の39%削減だけでなく,広く採用されているBF16フレームワークよりも75%高速に動作したことがわかった。
論文 参考訳(メタデータ) (2023-10-27T17:59:51Z) - ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization
Using Floating-Point Formats [25.543571445739936]
本研究では,大規模言語モデル(LLM)における浮動小数点量子化(FP)の実現可能性について検討する。
LLMでは、FP8のアクティベーションは整数(INT8)を一貫して上回り、性能エッジは10億を超えるパラメータを持つモデルではより顕著になる。
重量量子化では、FP4はINT4に匹敵する性能を示し、H100のようなFP対応ハードウェアへの展開を単純化している。
論文 参考訳(メタデータ) (2023-07-19T06:58:03Z) - FP8 Formats for Deep Learning [49.54015320992368]
2つのエンコーディングからなる8ビット浮動小数点(FP8)バイナリインターチェンジフォーマットを提案する。
E4M3のダイナミックレンジは無限大を表現せず、NaNに対して1つのマティーサビットパターンしか持たないことによって拡張される。
16ビットのトレーニングセッションで達成した結果の質を効果的にマッチングし,FP8フォーマットが様々な画像および言語タスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-09-12T17:39:55Z) - LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale [80.86029795281922]
トランスにおけるフィードフォワードおよびアテンションプロジェクション層に対するInt8行列乗算法を開発した。
175Bパラメータ16/32ビットのチェックポイントをロードし、Int8に変換し、直ちに使用することができる。
論文 参考訳(メタデータ) (2022-08-15T17:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。