Common Foundations for SHACL, ShEx, and PG-Schema
- URL: http://arxiv.org/abs/2502.01295v1
- Date: Mon, 03 Feb 2025 12:17:25 GMT
- Title: Common Foundations for SHACL, ShEx, and PG-Schema
- Authors: S. Ahmetaj, I. Boneva, J. Hidders, K. Hose, M. Jakubowski, J. E. Labra-Gayo, W. Martens, F. Mogavero, F. Murlak, C. Okulmus, A. Polleres, O. Savkovic, M. Simkus, D. Tomaszuk,
- Abstract summary: There is a need to describe the schema of such graphs.
Both the Semantic Web and the database community have independently developed graph schema languages: SHA, ShEx, and PG-CL.
Each language has its unique approach to defining constraints and validating graph data, leaving potential users in the dark about their commonalities and differences.
We employ a uniform framework to facilitate a comprehensive comparison between the languages and identify a common set of functionalities.
- Score: 0.0
- License:
- Abstract: Graphs have emerged as an important foundation for a variety of applications, including capturing and reasoning over factual knowledge, semantic data integration, social networks, and providing factual knowledge for machine learning algorithms. To formalise certain properties of the data and to ensure data quality, there is a need to describe the schema of such graphs. Because of the breadth of applications and availability of different data models, such as RDF and property graphs, both the Semantic Web and the database community have independently developed graph schema languages: SHACL, ShEx, and PG-Schema. Each language has its unique approach to defining constraints and validating graph data, leaving potential users in the dark about their commonalities and differences. In this paper, we provide formal, concise definitions of the core components of each of these schema languages. We employ a uniform framework to facilitate a comprehensive comparison between the languages and identify a common set of functionalities, shedding light on both overlapping and distinctive features of the three languages.
Related papers
- Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - UniGLM: Training One Unified Language Model for Text-Attributed Graph Embedding [31.464021556351685]
Unified Graph Language Model (UniGLM) is a graph embedding model that generalizes well to both in-domain and cross-domain TAGs.
UniGLM includes an adaptive positive sample selection technique for identifying structurally similar nodes and a lazy contrastive module that is devised to accelerate training.
arXiv Detail & Related papers (2024-06-17T19:45:21Z) - SRFUND: A Multi-Granularity Hierarchical Structure Reconstruction Benchmark in Form Understanding [55.48936731641802]
We present the SRFUND, a hierarchically structured multi-task form understanding benchmark.
SRFUND provides refined annotations on top of the original FUNSD and XFUND datasets.
The dataset includes eight languages including English, Chinese, Japanese, German, French, Spanish, Italian, and Portuguese.
arXiv Detail & Related papers (2024-06-13T02:35:55Z) - GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
We introduce a framework for developing Graph-aligned LAnguage Models (GLaM)
We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning.
arXiv Detail & Related papers (2024-02-09T19:53:29Z) - One for All: Towards Training One Graph Model for All Classification Tasks [61.656962278497225]
A unified model for various graph tasks remains underexplored, primarily due to the challenges unique to the graph learning domain.
We propose textbfOne for All (OFA), the first general framework that can use a single graph model to address the above challenges.
OFA performs well across different tasks, making it the first general-purpose across-domains classification model on graphs.
arXiv Detail & Related papers (2023-09-29T21:15:26Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
We propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges.
We also introduce LEGATO, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically.
arXiv Detail & Related papers (2023-05-31T10:36:10Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
arXiv Detail & Related papers (2023-05-24T11:53:19Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - End-to-End Entity Classification on Multimodal Knowledge Graphs [0.0]
We propose a multimodal message passing network which learns end-to-end from the structure of graphs.
Our model uses dedicated (neural) encoders to naturally learn embeddings for node features belonging to five different types of modalities.
Our result supports our hypothesis that including information from multiple modalities can help our models obtain a better overall performance.
arXiv Detail & Related papers (2020-03-25T14:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.