論文の概要: Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning
- arxiv url: http://arxiv.org/abs/2502.01495v1
- Date: Mon, 03 Feb 2025 16:28:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:33.922258
- Title: Supervised Similarity for High-Yield Corporate Bonds with Quantum Cognition Machine Learning
- Title(参考訳): 量子認知機械学習による高収率コーポレートボンドの類似性向上
- Authors: Joshua Rosaler, Luca Candelori, Vahagn Kirakosyan, Kharen Musaelian, Ryan Samson, Martin T. Wells, Dhagash Mehta, Stefano Pasquali,
- Abstract要約: 企業債券市場における距離メトリック学習への量子認知機械学習(QCML)の適用について検討する。
QCMLは、高利回り(HY)市場では古典的ツリーベースモデルよりも優れており、投資適格(IG)市場では同等またはより良いパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 0.8706730566331037
- License:
- Abstract: We investigate the application of quantum cognition machine learning (QCML), a novel paradigm for both supervised and unsupervised learning tasks rooted in the mathematical formalism of quantum theory, to distance metric learning in corporate bond markets. Compared to equities, corporate bonds are relatively illiquid and both trade and quote data in these securities are relatively sparse. Thus, a measure of distance/similarity among corporate bonds is particularly useful for a variety of practical applications in the trading of illiquid bonds, including the identification of similar tradable alternatives, pricing securities with relatively few recent quotes or trades, and explaining the predictions and performance of ML models based on their training data. Previous research has explored supervised similarity learning based on classical tree-based models in this context; here, we explore the application of the QCML paradigm for supervised distance metric learning in the same context, showing that it outperforms classical tree-based models in high-yield (HY) markets, while giving comparable or better performance (depending on the evaluation metric) in investment grade (IG) markets.
- Abstract(参考訳): 量子認知機械学習(QCML)は,量子理論の数学的フォーマリズムに根ざした,教師付きおよび教師なしの学習タスクのための新しいパラダイムである。
株式と比較すると、社債は比較的不平等であり、これらの証券の取引データと引用データの両方は比較的希薄である。
このように、企業債間の距離・相似性の尺度は、類似の取引可能な代替品の特定、比較的最近の引用や取引の少ない証券の価格設定、トレーニングデータに基づくMLモデルの予測と性能の説明など、様々な実践的応用に特に有用である。
従来,この文脈における古典的ツリーベースモデルに基づく教師付き類似性学習について検討してきたが,本稿では,従来のツリーベースモデルを高利回り(HY)市場において上回り,投資グレード(IG)市場において同等以上の性能(評価基準に依存する)を与えながら,同じ文脈における教師付き距離メトリック学習へのQCMLパラダイムの適用について検討した。
関連論文リスト
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
マルコフ連鎖のベクトル値および行列値関数に対する新しい高次元濃度不等式とベリー・エッシー境界を開発する。
我々は、強化学習における政策評価に広く用いられているTD学習アルゴリズムを解析する。
論文 参考訳(メタデータ) (2025-02-19T15:33:55Z) - Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis [89.60263788590893]
後学習量子化(PTQ)技術は大規模言語モデル(LLM)圧縮に広く採用されている。
既存のアルゴリズムは主にパフォーマンスに重点を置いており、モデルサイズ、パフォーマンス、量子化ビット幅間のトレードオフを見越している。
論文 参考訳(メタデータ) (2025-02-18T07:35:35Z) - Learning Universal Multi-level Market Irrationality Factors to Improve Stock Return Forecasting [22.086070375026303]
我々は、株価のリターン予測を強化するために、ユニバーサルマルチレベル市場不合理因子モデルを提案する。
UMIモデルは、市場における不合理な振る舞いを個々の株と市場レベルの両方から反映できる要因を学習する。
論文 参考訳(メタデータ) (2025-02-07T08:10:24Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
主評価指標の基礎に基づいて計算された領域関連メトリクスの範囲を定義する評価プロトコルを導入・指定する。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
論文 参考訳(メタデータ) (2024-07-20T16:37:21Z) - Electricity Price Forecasting in the Irish Balancing Market [0.0]
この研究は、広く研究されている日頭市場で成功した様々な価格予測手法をアイルランドのバランス市場に適用する。
異なるトレーニングサイズの影響を調査するフレームワークを用いて,統計モデル,機械学習モデル,ディープラーニングモデルを比較した。
大規模な数値的な研究により、日頭市場における良いパフォーマンスのモデルはバランスの取れないモデルではうまく機能しないことが示された。
論文 参考訳(メタデータ) (2024-02-09T15:18:00Z) - Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective [106.92016199403042]
パラメトリック・パースペクティブを用いて,大規模モデルから小規模モデルへの知識伝達を実証的に検討する。
感性に基づく手法を用いて、異なる大言語モデル間で知識固有のパラメータを抽出・調整する。
本研究は,パラメトリックな知識伝達の過程に寄与する重要な要因を明らかにする。
論文 参考訳(メタデータ) (2023-10-17T17:58:34Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Measuring Financial Time Series Similarity With a View to Identifying
Profitable Stock Market Opportunities [12.101446195463591]
歴史的価格データのみを用いて株式市場のリターンを予測するケースベースの推論手法について述べる。
この研究の重要な貢献は、歴史的価格データを比較するための新しい類似度指標の開発である。
論文 参考訳(メタデータ) (2021-07-07T17:26:32Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
署名された注文フローに対して,注文フローの不均衡の増加に伴い,価格への影響は線形に増大することを示す。
さらに,注文フローにサインされた市場への影響を予測するために,機械学習アルゴリズムを実装した。
この結果から,機械学習モデルを用いて財務変数を推定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-17T14:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。