論文の概要: Compact Yet Highly Accurate Printed Classifiers Using Sequential Support Vector Machine Circuits
- arxiv url: http://arxiv.org/abs/2502.01498v1
- Date: Mon, 03 Feb 2025 16:30:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:53:25.921171
- Title: Compact Yet Highly Accurate Printed Classifiers Using Sequential Support Vector Machine Circuits
- Title(参考訳): 逐次支援ベクトルマシン回路を用いたコンパクトで高精度な印刷分類器
- Authors: Ilias Sertaridis, Spyridon Besias, Florentia Afentaki, Konstantinos Balaskas, Georgios Zervakis,
- Abstract要約: 本稿では,最初のシーケンシャルサポートベクトルマシン(SVM)分類器を紹介する。
我々のSVMは平均6倍低い面積と4.6%の精度で出力される。
- 参考スコア(独自算出の注目度): 0.6670927729669428
- License:
- Abstract: Printed Electronics (PE) technology has emerged as a promising alternative to silicon-based computing. It offers attractive properties such as on-demand ultra-low-cost fabrication, mechanical flexibility, and conformality. However, PE are governed by large feature sizes, prohibiting the realization of complex printed Machine Learning (ML) classifiers. Leveraging PE's ultra-low non-recurring engineering and fabrication costs, designers can fully customize hardware to a specific ML model and dataset, significantly reducing circuit complexity. Despite significant advancements, state-of-the-art solutions achieve area efficiency at the expense of considerable accuracy loss. Our work mitigates this by designing area- and power-efficient printed ML classifiers with little to no accuracy degradation. Specifically, we introduce the first sequential Support Vector Machine (SVM) classifiers, exploiting the hardware efficiency of bespoke control and storage units and a single Multiply-Accumulate compute engine. Our SVMs yield on average 6x lower area and 4.6% higher accuracy compared to the printed state of the art.
- Abstract(参考訳): Printed Electronics (PE)技術は、シリコンベースのコンピューティングに代わる有望な代替手段として登場した。
オンデマンドのウルトラローコスト製造、機械的柔軟性、整合性などの魅力的な特性を提供する。
しかし、PEは大きな特徴サイズで管理されており、複雑な印刷機械学習(ML)分類器の実現を禁止している。
PEの超低レベルのエンジニアリングと製造コストを活用することで、デザイナはハードウェアを特定のMLモデルとデータセットに完全にカスタマイズすることが可能になる。
高度な進歩にもかかわらず、最先端のソリューションは相当な精度の損失を犠牲にして面積効率を達成する。
本研究は,領域と電力効率のよい印刷ML分類器を,精度の低下を伴わずに設計することで,これを緩和する。
具体的には,最初の逐次サポートベクトルマシン(SVM)分類器を導入し,ベスポーク制御とストレージユニットのハードウェア効率を活かし,マルチプライ・アキュムレート計算エンジンを1つ導入する。
我々のSVMは、印刷された最先端技術に比べて平均6倍低い領域と4.6%高い精度で得られます。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - Embedding Hardware Approximations in Discrete Genetic-based Training for Printed MLPs [1.4694098707981968]
Printed Electronics (PE)は、伸縮性、適合性、および非有毒なハードウェアを可能にする。
PEは大きな機能サイズで制約されており、機械学習(ML)認識回路のような複雑な回路を実装することは困難である。
本稿では,ハードウェア近似をトレーニングプロセスに統合することにより,近似計算の利点を最大化する。
論文 参考訳(メタデータ) (2024-02-05T11:52:23Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
ハードウェア・ソフトウェア共同設計型, ランダム抵抗型メモリベース深部極点学習マシン(DEPLM)を提案する。
我々の共同設計システムは,従来のシステムと比較して,エネルギー効率の大幅な向上とトレーニングコストの削減を実現している。
論文 参考訳(メタデータ) (2023-12-14T09:46:16Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Model-to-Circuit Cross-Approximation For Printed Machine Learning
Classifiers [4.865819809855699]
プリントエレクトロニクス(PE)は、オンデマンド製造、低い非再帰エンジニアリングコスト、サブセント製造コストを約束する。
PEにおける大きな特徴サイズは、PEにおける複雑なMLモデルの実現を禁止している。
本稿では,PEにおける複雑なMLモデルを実現するため,自動層間近似フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-14T22:11:34Z) - Co-Design of Approximate Multilayer Perceptron for Ultra-Resource
Constrained Printed Circuits [4.865819809855699]
Printed Electronics (PE) では、複雑な印刷機械学習回路の実現が禁止されている。
このフレームワークは、近似計算の原理を利用して、超リソース制約付きプリント多層パーセプトロン(MLP)を実現する。
評価の結果,最先端のベースラインと比較して,回路は平均6倍 (5.7x) 以下の領域 (電力) と1%未満の精度損失を特徴としている。
論文 参考訳(メタデータ) (2023-02-28T13:55:19Z) - HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer
Compression [69.36555801766762]
本稿では,分解可能な指数空間を効率的に探索できるハードウェア対応テンソル分解フレームワークHEATを提案する。
ハードウェア対応のBERT変異体は, エネルギー遅延を5.7倍に低減し, 精度が1.1%以下であることを示す。
論文 参考訳(メタデータ) (2022-11-30T05:31:45Z) - Approximate Decision Trees For Machine Learning Classification on Tiny
Printed Circuits [0.7349727826230862]
印刷電子(PE)は従来の評価基準ではシリコン系システムと競合することができない。
PEはオンデマンドの超低価格製造、柔軟性、非毒性などの魅力的な特性を提供する。
PEの魅力的な特性にもかかわらず、PEの大きな特徴は複雑なプリント回路の実現を禁止している。
論文 参考訳(メタデータ) (2022-03-15T15:47:59Z) - Cross-Layer Approximation For Printed Machine Learning Circuits [4.865819809855699]
印刷エレクトロニクス(PE)における機械学習(ML)アーキテクチャに適した層間近似を提案し,実装する。
その結果, クロス近似は, 最先端の精密設計と比較して, 平均面積47%, 消費電力44%, 精度1%以下で最適設計を提供することを示した。
論文 参考訳(メタデータ) (2022-03-11T13:41:15Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
本研究はトランスフォーマーモデルにおける高効率事前学習目標について検討する。
マスクトークンの除去と損失時のアウトプット全体の考慮が,パフォーマンス向上に不可欠な選択であることを証明する。
論文 参考訳(メタデータ) (2021-04-20T00:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。