Dynamic object goal pushing with mobile manipulators through model-free constrained reinforcement learning
- URL: http://arxiv.org/abs/2502.01546v1
- Date: Mon, 03 Feb 2025 17:28:35 GMT
- Title: Dynamic object goal pushing with mobile manipulators through model-free constrained reinforcement learning
- Authors: Ioannis Dadiotis, Mayank Mittal, Nikos Tsagarakis, Marco Hutter,
- Abstract summary: We develop a learning-based controller for a mobile manipulator to move an unknown object to a desired position and yaw orientation through a sequence of pushing actions.
The proposed controller for the robotic arm and the mobile base motion is trained using a constrained Reinforcement Learning (RL) formulation.
The learned policy achieves a success rate of 91.35% in simulation and at least 80% on hardware in challenging scenarios.
- Score: 9.305146484955296
- License:
- Abstract: Non-prehensile pushing to move and reorient objects to a goal is a versatile loco-manipulation skill. In the real world, the object's physical properties and friction with the floor contain significant uncertainties, which makes the task challenging for a mobile manipulator. In this paper, we develop a learning-based controller for a mobile manipulator to move an unknown object to a desired position and yaw orientation through a sequence of pushing actions. The proposed controller for the robotic arm and the mobile base motion is trained using a constrained Reinforcement Learning (RL) formulation. We demonstrate its capability in experiments with a quadrupedal robot equipped with an arm. The learned policy achieves a success rate of 91.35% in simulation and at least 80% on hardware in challenging scenarios. Through our extensive hardware experiments, we show that the approach demonstrates high robustness against unknown objects of different masses, materials, sizes, and shapes. It reactively discovers the pushing location and direction, thus achieving contact-rich behavior while observing only the pose of the object. Additionally, we demonstrate the adaptive behavior of the learned policy towards preventing the object from toppling.
Related papers
- Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
We present a modular framework designed to enable a robot hand-arm system to learn how to catch flying objects.
Our framework consists of five core modules: (i) an object state estimator that learns object trajectory prediction, (ii) a catching pose quality network that learns to score and rank object poses for catching, (iii) a reaching control policy trained to move the robot hand to pre-catch poses, and (iv) a grasping control policy trained to perform soft catching motions.
We conduct extensive evaluations of our framework in simulation for each module and the integrated system, to demonstrate high success rates of in-flight
arXiv Detail & Related papers (2023-12-21T16:20:12Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Causal Policy Gradient for Whole-Body Mobile Manipulation [39.3461626518495]
We introduce Causal MoMa, a new reinforcement learning framework to train policies for typical MoMa tasks.
We evaluate the performance of Causal MoMa on three types of simulated robots across different MoMa tasks.
arXiv Detail & Related papers (2023-05-04T23:23:47Z) - Learning to Transfer In-Hand Manipulations Using a Greedy Shape
Curriculum [79.6027464700869]
We show that natural and robust in-hand manipulation of simple objects in a dynamic simulation can be learned from a high quality motion capture example.
We propose a simple greedy curriculum search algorithm that can successfully apply to a range of objects such as a teapot, bunny, bottle, train, and elephant.
arXiv Detail & Related papers (2023-03-14T17:08:19Z) - GraspARL: Dynamic Grasping via Adversarial Reinforcement Learning [16.03016392075486]
We introduce an adversarial reinforcement learning framework for dynamic grasping, namely GraspARL.
We formulate the dynamic grasping problem as a'move-and-grasp' game, where the robot is to pick up the object on the mover and the adversarial mover is to find a path to escape it.
In this way, the mover can auto-generate diverse moving trajectories while training. And the robot trained with the adversarial trajectories can generalize to various motion patterns.
arXiv Detail & Related papers (2022-03-04T03:25:09Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - Property-Aware Robot Object Manipulation: a Generative Approach [57.70237375696411]
In this work, we focus on how to generate robot motion adapted to the hidden properties of the manipulated objects.
We explore the possibility of leveraging Generative Adversarial Networks to synthesize new actions coherent with the properties of the object.
Our results show that Generative Adversarial Nets can be a powerful tool for the generation of novel and meaningful transportation actions.
arXiv Detail & Related papers (2021-06-08T14:15:36Z) - Articulated Object Interaction in Unknown Scenes with Whole-Body Mobile
Manipulation [16.79185733369416]
We propose a two-stage architecture for autonomous interaction with large articulated objects in unknown environments.
The first stage uses a learned model to estimate the articulated model of a target object from an RGB-D input and predicts an action-conditional sequence of states for interaction.
The second stage comprises of a whole-body motion controller to manipulate the object along the generated kinematic plan.
arXiv Detail & Related papers (2021-03-18T21:32:18Z) - Emergence of Different Modes of Tool Use in a Reaching and Dragging Task [7.40839907166763]
In this paper, we investigate different modes of tool use that emerge in a reaching and dragging task.
We trained a deep-reinforcement learning based controller with minimal reward shaping information to tackle this task.
We observed the emergence of a wide range of unexpected behaviors, not directly encoded in the motor primitives or reward functions.
arXiv Detail & Related papers (2020-12-08T19:37:58Z) - Learning Dexterous Grasping with Object-Centric Visual Affordances [86.49357517864937]
Dexterous robotic hands are appealing for their agility and human-like morphology.
We introduce an approach for learning dexterous grasping.
Our key idea is to embed an object-centric visual affordance model within a deep reinforcement learning loop.
arXiv Detail & Related papers (2020-09-03T04:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.