Articulated Object Interaction in Unknown Scenes with Whole-Body Mobile
Manipulation
- URL: http://arxiv.org/abs/2103.10534v1
- Date: Thu, 18 Mar 2021 21:32:18 GMT
- Title: Articulated Object Interaction in Unknown Scenes with Whole-Body Mobile
Manipulation
- Authors: Mayank Mittal, David Hoeller, Farbod Farshidian, Marco Hutter, Animesh
Garg
- Abstract summary: We propose a two-stage architecture for autonomous interaction with large articulated objects in unknown environments.
The first stage uses a learned model to estimate the articulated model of a target object from an RGB-D input and predicts an action-conditional sequence of states for interaction.
The second stage comprises of a whole-body motion controller to manipulate the object along the generated kinematic plan.
- Score: 16.79185733369416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A kitchen assistant needs to operate human-scale objects, such as cabinets
and ovens, in unmapped environments with dynamic obstacles. Autonomous
interactions in such real-world environments require integrating dexterous
manipulation and fluid mobility. While mobile manipulators in different
form-factors provide an extended workspace, their real-world adoption has been
limited. This limitation is in part due to two main reasons: 1) inability to
interact with unknown human-scale objects such as cabinets and ovens, and 2)
inefficient coordination between the arm and the mobile base. Executing a
high-level task for general objects requires a perceptual understanding of the
object as well as adaptive whole-body control among dynamic obstacles. In this
paper, we propose a two-stage architecture for autonomous interaction with
large articulated objects in unknown environments. The first stage uses a
learned model to estimate the articulated model of a target object from an
RGB-D input and predicts an action-conditional sequence of states for
interaction. The second stage comprises of a whole-body motion controller to
manipulate the object along the generated kinematic plan. We show that our
proposed pipeline can handle complicated static and dynamic kitchen settings.
Moreover, we demonstrate that the proposed approach achieves better performance
than commonly used control methods in mobile manipulation. For additional
material, please check: https://www.pair.toronto.edu/articulated-mm/ .
Related papers
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Controllable Human-Object Interaction Synthesis [77.56877961681462]
We propose Controllable Human-Object Interaction Synthesis (CHOIS) to generate synchronized object motion and human motion in 3D scenes.
Here, language descriptions inform style and intent, and waypoints, which can be effectively extracted from high-level planning, ground the motion in the scene.
Our module seamlessly integrates with a path planning module, enabling the generation of long-term interactions in 3D environments.
arXiv Detail & Related papers (2023-12-06T21:14:20Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Causal Policy Gradient for Whole-Body Mobile Manipulation [39.3461626518495]
We introduce Causal MoMa, a new reinforcement learning framework to train policies for typical MoMa tasks.
We evaluate the performance of Causal MoMa on three types of simulated robots across different MoMa tasks.
arXiv Detail & Related papers (2023-05-04T23:23:47Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - N$^2$M$^2$: Learning Navigation for Arbitrary Mobile Manipulation
Motions in Unseen and Dynamic Environments [9.079709086741987]
We introduce Neural Navigation for Mobile Manipulation (N$2$M$2$) which extends this decomposition to complex obstacle environments.
The resulting approach can perform unseen, long-horizon tasks in unexplored environments while instantly reacting to dynamic obstacles and environmental changes.
We demonstrate the capabilities of our proposed approach in extensive simulation and real-world experiments on multiple kinematically diverse mobile manipulators.
arXiv Detail & Related papers (2022-06-17T12:52:41Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - V-MAO: Generative Modeling for Multi-Arm Manipulation of Articulated
Objects [51.79035249464852]
We present a framework for learning multi-arm manipulation of articulated objects.
Our framework includes a variational generative model that learns contact point distribution over object rigid parts for each robot arm.
arXiv Detail & Related papers (2021-11-07T02:31:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.