論文の概要: FireCastNet: Earth-as-a-Graph for Seasonal Fire Prediction
- arxiv url: http://arxiv.org/abs/2502.01550v1
- Date: Mon, 03 Feb 2025 17:30:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:03:23.543053
- Title: FireCastNet: Earth-as-a-Graph for Seasonal Fire Prediction
- Title(参考訳): FireCastNet: 季節予報のためのアース・アズ・ア・グラフ
- Authors: Dimitrios Michail, Charalampos Davalas, Lefki-Ioanna Panagiotou, Ioannis Prapas, Spyros Kondylatos, Nikolaos Ioannis Bountos, Ioannis Papoutsis,
- Abstract要約: 本稿では,3次元畳み込みエンコーダとGraphCastを組み合わせた新しいアーキテクチャFireCastNetを提案する。
FireCastNetは、異なる空間スケールと時間スケールで、山火事につながるコンテキストをキャプチャするために訓練されている。
本研究は,燃えている地域の存在を予測するためのモデルの有効性を評価することに焦点を当てた。
- 参考スコア(独自算出の注目度): 2.748450182087935
- License:
- Abstract: With climate change expected to exacerbate fire weather conditions, the accurate and timely anticipation of wildfires becomes increasingly crucial for disaster mitigation. In this study, we utilize SeasFire, a comprehensive global wildfire dataset with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning. For the predictive analysis, we present FireCastNet, a novel architecture which combines a 3D convolutional encoder with GraphCast, originally developed for global short-term weather forecasting using graph neural networks. FireCastNet is trained to capture the context leading to wildfires, at different spatial and temporal scales. Our investigation focuses on assessing the effectiveness of our model in predicting the presence of burned areas at varying forecasting time horizons globally, extending up to six months into the future, and on how different spatial or/and temporal context affects the performance. Our findings demonstrate the potential of deep learning models in seasonal fire forecasting; longer input time-series leads to more robust predictions, while integrating spatial information to capture wildfire spatio-temporal dynamics boosts performance. Finally, our results hint that in order to enhance performance at longer forecasting horizons, a larger receptive field spatially needs to be considered.
- Abstract(参考訳): 気候変動が気象条件を悪化させると予想されているため、山火事の正確かつタイムリーな予報は、災害の緩和にますます重要になっている。
本研究では,気候,植生,海洋指標,人為的変数を含む総合的な地球規模の山火事データセットであるSeasFireを用いて,機械学習による季節的山火事予報を可能にする。
本稿では3次元畳み込みエンコーダとGraphCastを組み合わせた新しいアーキテクチャFireCastNetを提案する。
FireCastNetは、異なる空間スケールと時間スケールで、山火事につながるコンテキストをキャプチャするために訓練されている。
本研究は,世界規模で予測時間帯に焼成地域が存在することを予測し,今後6ヶ月までの期間を延ばし,空間的・時間的異なる状況がパフォーマンスに与える影響について検討する。
本研究は,季節的な火災予報における深層学習モデルの可能性を示すものであり,より長い入力時間によってより堅牢な予測がもたらされ,一方,山火事時空間のダイナミックスを捉えるために空間情報を統合することにより,性能が向上することを示す。
最後に, より長い予測地平線における性能を高めるためには, 空間的に大きな受容場を考える必要があることを示唆する。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Seasonal Fire Prediction using Spatio-Temporal Deep Neural Networks [2.748450182087935]
We use SeasFire, a comprehensive global wildfire data with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning。
予測分析のために、野火の時間的文脈を捉えた異なるアーキテクチャでディープラーニングモデルを訓練する。
本研究は,季節火災予報における深層学習モデルの可能性を示すものである。
論文 参考訳(メタデータ) (2024-04-09T16:28:54Z) - Explainable Global Wildfire Prediction Models using Graph Neural
Networks [2.2389592950633705]
本稿では,グローバルな山火事予測のための革新的なグラフニューラルネットワーク(GNN)モデルを提案する。
我々のアプローチは、地球温暖化や山火事のデータをグラフ表現に変換し、ヌル海洋データロケーションのような課題に対処します。
論文 参考訳(メタデータ) (2024-02-11T10:44:41Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Deep Learning for Global Wildfire Forecasting [1.6929753878977016]
我々は,世界規模の火災データセットを作成し,世界規模の火災発生地域をサブシーズン規模で予測するプロトタイプを実証する。
本稿では,季節・季節の消防車に関連する様々な変数を含む,オープンアクセスのグローバル分析対応データキューブを提案する。
我々は,地球規模の山火事予測をイメージセグメンテーションタスクとして扱う深層学習モデルを訓練し,その前に焼かれた8,16,32,64日間の存在を巧みに予測する。
論文 参考訳(メタデータ) (2022-11-01T15:39:01Z) - Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data [0.0]
本稿では,米国西部の10か所で収集されたローカルデータをローカルエージェントで共有する分散学習フレームワークを提案する。
提案モデルには,動的オンライン推定や時系列モデリングなど,予測評価における特徴的ニーズに対処する特徴がある。
論文 参考訳(メタデータ) (2022-09-15T22:34:06Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Modeling Wildfire Perimeter Evolution using Deep Neural Networks [0.0]
本研究では,24時間間における山火事周囲の進化を予測できる山火事拡散モデルを提案する。
このモデルはカリフォルニアのシエラネバダ山脈西部の山火事から、実際の歴史的データセットから、山火事の拡散力学を学習することができる。
論文 参考訳(メタデータ) (2020-09-08T20:06:01Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。