論文の概要: Visual Theory of Mind Enables the Invention of Writing Systems
- arxiv url: http://arxiv.org/abs/2502.01568v2
- Date: Tue, 04 Feb 2025 03:36:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:31.848231
- Title: Visual Theory of Mind Enables the Invention of Writing Systems
- Title(参考訳): 心の視覚理論は、筆記システムの発明を可能にする
- Authors: Benjamin A. Spiegel, Lucas Gelfond, George Konidaris,
- Abstract要約: エビデンスによれば、一部の書記システムの初期の形態は、元々は象徴的なピクトグラフで構成されていた。
私たちのモデルは、初期書記システムの開発に繋がった認知的・文化的プロセスに光を当てています。
- 参考スコア(独自算出の注目度): 10.013537728631038
- License:
- Abstract: Abstract symbolic writing systems are semiotic codes that are ubiquitous in modern society but are otherwise absent in the animal kingdom. Anthropological evidence suggests that the earliest forms of some writing systems originally consisted of iconic pictographs, which signify their referent via visual resemblance. While previous studies have examined the emergence and, separately, the evolution of pictographic writing systems through a computational lens, most employ non-naturalistic methodologies that make it difficult to draw clear analogies to human and animal cognition. We develop a multi-agent reinforcement learning testbed for emergent communication called a Signification Game, and formulate a model of inferential communication that enables agents to leverage visual theory of mind to communicate actions using pictographs. Our model, which is situated within a broader formalism for animal communication, sheds light on the cognitive and cultural processes that led to the development of early writing systems.
- Abstract(参考訳): 抽象記号表記体系は、現代社会で広く見られるが、動物界では欠落している記号体系である。
人類学的な証拠は、一部の書記システムの初期の形態は、もともとは象徴的なピクトグラフで構成されており、視覚的類似性によってその参照を表わすものであることを示唆している。
これまでの研究では、コンピュータ・レンズによるピクトグラフィー・ライティング・システムの出現と進化を別々に検討してきたが、ほとんどの場合、人間や動物の認知と明確な類似性を引き出すのが困難になる非自然主義的手法を用いている。
そこで我々は, エージェントが心の視覚理論を利用して, ピクトグラフを用いて行動を伝えるための推論コミュニケーションモデルを構築し, 創発的コミュニケーションのためのマルチエージェント強化学習ベッドを開発した。
我々のモデルは、動物コミュニケーションのより広範な形式主義の中にあり、初期書記システムの開発に繋がる認知的・文化的プロセスに光を当てている。
関連論文リスト
- Science is Exploration: Computational Frontiers for Conceptual Metaphor Theory [0.0]
本研究では,Large Language Models (LLM) が,自然言語データにおける概念的メタファの存在を正確に識別し,説明することができることを示す。
メタファアノテーションガイドラインに基づく新しいプロンプト手法を用いて,LLMが概念的メタファに関する大規模計算研究において有望なツールであることを実証した。
論文 参考訳(メタデータ) (2024-10-11T17:03:13Z) - The Language of Infographics: Toward Understanding Conceptual Metaphor Use in Scientific Storytelling [9.302187675469554]
我々は概念メタファー(CMT)を可視化領域にマッピングし、科学インフォグラフィックでよく使われる視覚概念メタファーのパターンに対処する。
本分析は, 概念翻訳において, 存在論的, 配向的概念的メタファーが最も広く応用されていることを示す。
論文 参考訳(メタデータ) (2024-07-18T11:39:50Z) - Models of symbol emergence in communication: a conceptual review and a
guide for avoiding local minima [0.0]
計算シミュレーションは、通信の出現に関する仮説をテストする一般的な方法である。
我々は、いくつかの最も代表的なモデルの仮定と説明的対象を特定し、既知の結果を要約する。
この観点から、意味ある象徴的コミュニケーションの出現をモデル化する道のりをスケッチする。
論文 参考訳(メタデータ) (2023-03-08T12:53:03Z) - CLAMP: Prompt-based Contrastive Learning for Connecting Language and
Animal Pose [70.59906971581192]
本稿では,言語とAniMal Poseを効果的に接続するための,新しいプロンプトベースのコントラスト学習手法を提案する。
CLAMPは、ネットワークトレーニング中にテキストプロンプトを動物のキーポイントに適応させることでギャップを埋めようとしている。
実験結果から, 教師付き, 少数ショット, ゼロショット設定下での最先端性能が得られた。
論文 参考訳(メタデータ) (2022-06-23T14:51:42Z) - Emergent Graphical Conventions in a Visual Communication Game [80.79297387339614]
人間は象徴的な言語とは別にグラフィカルなスケッチと通信する。
視覚コミュニケーションゲームをする2つのニューラルエージェントを介して、このような進化過程をモデル化し、シミュレートする第一歩を踏み出す。
我々は,コミュニケーションと抽象的なグラフィカルな慣行を成功させるために,エージェントを共同で進化させる新しい強化学習手法を考案した。
論文 参考訳(メタデータ) (2021-11-28T18:59:57Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
本稿では,画像のオブジェクトへの処理,学習関係,論理規則に関する完全なニューロシンボリックな手法を提案する。
主な貢献は、シンボリックリレーションとルールを抽出できるディープラーニングアーキテクチャにおける差別化可能なレイヤである。
我々のモデルは最先端のシンボリックラーナーを超えてスケールし、ディープリレーショナルニューラルネットワークアーキテクチャよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-06-14T15:19:06Z) - Metaphor Generation with Conceptual Mappings [58.61307123799594]
我々は、関連する動詞を置き換えることで、リテラル表現を与えられた比喩文を生成することを目指している。
本稿では,認知領域間の概念マッピングを符号化することで生成過程を制御することを提案する。
教師なしCM-Lexモデルは,近年のディープラーニングメタファ生成システムと競合することを示す。
論文 参考訳(メタデータ) (2021-06-02T15:27:05Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
最近の研究では、非ヒト種における音響コミュニケーションを分析するための機械学習ツールの約束を示した。
マッコウクジラの大量生物音響データの収集と処理に必要な重要な要素について概説する。
開発された技術能力は、非人間コミュニケーションと動物行動研究を研究する幅広いコミュニティにおいて、クロス応用と進歩をもたらす可能性が高い。
論文 参考訳(メタデータ) (2021-04-17T18:39:22Z) - Natural Language Rationales with Full-Stack Visual Reasoning: From
Pixels to Semantic Frames to Commonsense Graphs [106.15931418425906]
本研究は,複数の複雑な視覚的推論課題にまたがる自然言語の有理性の生成に焦点を当てた最初の研究である。
RationaleVT Transformerは、事前学習された言語モデルとオブジェクト認識、接地された視覚的セマンティックフレーム、視覚的コモンセンスグラフを組み合わせることで、自由テキスト論理を生成することを学習する統合モデルである。
実験の結果, 基礎となる事前学習言語モデルは視覚適応の恩恵を受けており, 複雑な視覚的・テキスト的推論タスクに対するモデル解釈可能性の補完として, 自由文合理化が有望な研究方向であることを示唆した。
論文 参考訳(メタデータ) (2020-10-15T05:08:56Z) - Towards Graph Representation Learning in Emergent Communication [37.8523331078468]
我々は,マルチエージェントシステムにおける言語進化と協調を支援するために,グラフ畳み込みネットワークを利用する。
画像ベースの参照ゲームに動機づけられた,複雑度の異なるグラフ参照ゲームを提案する。
出現した通信プロトコルは堅牢であり、エージェントはゲームの変動の真の要因を明らかにし、トレーニング中に遭遇したサンプルを超えて一般化することを学ぶ。
論文 参考訳(メタデータ) (2020-01-24T15:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。