論文の概要: TReMu: Towards Neuro-Symbolic Temporal Reasoning for LLM-Agents with Memory in Multi-Session Dialogues
- arxiv url: http://arxiv.org/abs/2502.01630v1
- Date: Mon, 03 Feb 2025 18:58:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:59:55.933664
- Title: TReMu: Towards Neuro-Symbolic Temporal Reasoning for LLM-Agents with Memory in Multi-Session Dialogues
- Title(参考訳): マルチセッション対話における記憶を伴うLDMエージェントのためのTReMu
- Authors: Yubin Ge, Salvatore Romeo, Jason Cai, Raphael Shu, Monica Sunkara, Yassine Benajiba, Yi Zhang,
- Abstract要約: マルチセッション対話における時間的推論は、過小評価されている重要な課題である。
本稿では,LoCoMoからの対話を増強し,複数選択QAを作成することで,新しいベンチマークを構築する手法を提案する。
また,LLMエージェントの時間的推論能力の向上を目的とした新しいフレームワークであるTReMuについても紹介する。
- 参考スコア(独自算出の注目度): 13.638344516302851
- License:
- Abstract: Temporal reasoning in multi-session dialogues presents a significant challenge which has been under-studied in previous temporal reasoning benchmarks. To bridge this gap, we propose a new evaluation task for temporal reasoning in multi-session dialogues and introduce an approach to construct a new benchmark by augmenting dialogues from LoCoMo and creating multi-choice QAs. Furthermore, we present TReMu, a new framework aimed at enhancing the temporal reasoning capabilities of LLM-agents in this context. Specifically, the framework employs \textit{time-aware memorization} through timeline summarization, generating retrievable memory by summarizing events in each dialogue session with their inferred dates. Additionally, we integrate \textit{neuro-symbolic temporal reasoning}, where LLMs generate Python code to perform temporal calculations and select answers. Experimental evaluations on popular LLMs demonstrate that our benchmark is challenging, and the proposed framework significantly improves temporal reasoning performance compared to baseline methods, raising from 29.83 on GPT-4o via standard prompting to 77.67 via our approach and highlighting its effectiveness in addressing temporal reasoning in multi-session dialogues.
- Abstract(参考訳): 複数セッション対話における時間的推論は、従来の時間的推論ベンチマークでは研究されていない重要な課題を示す。
このギャップを埋めるため、我々は複数セッション対話における時間的推論のための新しい評価タスクを提案し、LoCoMoからの対話を増強し、複数選択QAを作成することで新しいベンチマークを構築するアプローチを提案する。
さらに,この文脈におけるLLMエージェントの時間的推論能力の向上を目的とした新しいフレームワークであるTReMuを提案する。
特に、このフレームワークは、タイムラインの要約を通じて \textit{time-aware memorization} を用いており、各対話セッションのイベントを推測日付で要約することで、検索可能なメモリを生成する。
さらに, LLM が Python コードを生成して, 時間計算を行い, 回答を選択するという, \textit{neuro-symbolic temporal reasoning} を統合した。
提案手法は,GPT-4oで29.83から77.67に引き上げ,マルチセッション対話における時間的推論に対処する上での有効性を強調した。
関連論文リスト
- Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models [0.0]
本稿では,対話エージェントを対象とした動的ベンチマークシステムを提案する。
タスクをインターリーブするために定期的にコンテキストスイッチを行い、エージェントの長期記憶、継続的な学習、情報統合機能を評価する現実的なテストシナリオを構築します。
論文 参考訳(メタデータ) (2024-09-30T12:01:29Z) - RAD-Bench: Evaluating Large Language Models Capabilities in Retrieval Augmented Dialogues [8.036117602566074]
RAD-Benchは、検索後のマルチターン対話における大規模言語モデルの能力を評価するために設計されたベンチマークである。
また, LLM の評価結果から, モデルの性能が劣化し, 追加の条件や制約が適用されることが判明した。
論文 参考訳(メタデータ) (2024-09-19T08:26:45Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
我々はmccHRLと呼ばれる新しいフレームワークを提案し、リストワイドレコメンデーションにおける時間的抽象化のレベルを異なるものにする。
階層的な枠組みの中では、ハイレベルエージェントがユーザ知覚の進化を研究し、低レベルエージェントがアイテム選択ポリシーを作成している。
その結果,本手法による性能改善は,いくつかのよく知られたベースラインと比較して有意な結果が得られた。
論文 参考訳(メタデータ) (2024-09-11T17:01:06Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding [57.62275091656578]
時間的複合イベント(TCE)として、長い期間にわたって多くのニュース記事から構成される複合イベントについて述べる。
本稿では,Large Language Models (LLMs) を用いて,TCE内のイベントチェーンを系統的に抽出し,解析する手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T16:42:17Z) - Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
我々は,高品質で長期的な対話を生成するための,マシン・ヒューマン・パイプラインを導入する。
我々は、各エージェントに画像の共有と反応の能力を持たせる。
生成した会話は、長距離一貫性のために人間のアノテーションによって検証され、編集される。
論文 参考訳(メタデータ) (2024-02-27T18:42:31Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Recursively Summarizing Enables Long-Term Dialogue Memory in Large
Language Models [75.98775135321355]
長い会話をすると、大きな言語モデル(LLM)は過去の情報を思い出さず、一貫性のない応答を生成する傾向がある。
本稿では,長期記憶能力を高めるために,大規模言語モデル(LLM)を用いて要約/メモリを生成することを提案する。
論文 参考訳(メタデータ) (2023-08-29T04:59:53Z) - Conversational speech recognition leveraging effective fusion methods
for cross-utterance language modeling [12.153618111267514]
音声認識における言語モデリングのための異種会話履歴融合手法を提案する。
現在の発話の音響埋め込みとそれに対応する会話履歴のセマンティックコンテンツとを融合して利用する新しい音声融合機構が導入された。
我々は,ASR N-best仮説再構成タスクを予測問題として,象徴的な事前学習型LMであるBERTを活用する。
論文 参考訳(メタデータ) (2021-11-05T09:07:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。