論文の概要: Fast Large Language Model Collaborative Decoding via Speculation
- arxiv url: http://arxiv.org/abs/2502.01662v2
- Date: Thu, 29 May 2025 15:20:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 15:42:33.090571
- Title: Fast Large Language Model Collaborative Decoding via Speculation
- Title(参考訳): 推測による高速大規模言語モデル協調デコーディング
- Authors: Jiale Fu, Yuchu Jiang, Junkai Chen, Jiaming Fan, Xin Geng, Xu Yang,
- Abstract要約: 大規模言語モデル(LLM)協調デコーディング技術は、生成ステップ毎に複数のモデルの出力を組み合わせることで、出力品質を向上させる。
我々は、性能を損なうことなく協調的復号を加速する新しいフレームワークである、Speculation (CoS)による協調復号法を紹介する。
- 参考スコア(独自算出の注目度): 35.45595308776127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Model (LLM) collaborative decoding techniques improve output quality by combining the outputs of multiple models at each generation step, but they incur high computational costs. In this paper, we introduce Collaborative decoding via Speculation (CoS), a novel framework that accelerates collaborative decoding without compromising performance. Inspired by Speculative Decoding--where a small proposal model generates tokens sequentially, and a larger target model verifies them in parallel, our approach builds on two key insights: (1) the verification distribution can be the combined distribution of both the proposal and target models, and (2) alternating each model as the proposer and verifier can further enhance efficiency. We generalize this method to collaboration among n models and theoretically prove that CoS is never slower than standard collaborative decoding, typically achieving faster speed. Extensive experiments demonstrate CoS is 1.11x-2.23x faster than standard collaborative decoding without compromising generation quality. Our code is available at https://github.com/Kamichanw/CoS/.
- Abstract(参考訳): 大規模言語モデル (LLM) 協調復号法は, 生成ステップ毎に複数のモデルの出力を組み合わせることで, 出力品質を向上するが, 計算コストが高い。
本稿では,性能を損なうことなく協調的復号を高速化する新しいフレームワークであるSpeculation (CoS) を用いた協調復号法を提案する。
提案手法は,提案手法と提案手法を併用した提案手法と,提案手法と検証手法を併用した提案手法と,提案手法と検証手法を併用した提案手法と,提案手法と検証手法を併用した2つの重要な知見に基づく。
我々は、この手法をnモデル間の協調に一般化し、CoSが標準のコラボレーティブデコーディングよりも遅くないことを理論的に証明する。
大規模な実験では、CoSは生成品質を損なうことなく、標準のコラボレーティブデコーディングよりも1.11x-2.23倍高速であることを示した。
私たちのコードはhttps://github.com/Kamichanw/CoS/で利用可能です。
関連論文リスト
- Reviving Any-Subset Autoregressive Models with Principled Parallel Sampling and Speculative Decoding [55.2480439325792]
任意の順序言語モデルでは、正しい関節分布からトークンを並列にサンプリングする方法がオープンな問題である。
我々は,任意のサブセット自動回帰モデル (AS-ARM) という,異なるモデルのクラスが解を持っていることを発見した。
我々は,AS-ARMがベンチマークタスクを埋め込んだ200M未満のパラメータモデル間で最先端の性能を実現し,コード生成における50倍のモデルの性能とほぼ一致していることを示す。
論文 参考訳(メタデータ) (2025-04-29T06:33:13Z) - Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM [43.77512279007385]
Ling-Coder-Liteは、包括的なパフォーマンスと究極の効率を備えた、コード大言語モデルである。
我々は、高品質なデータキュレーション手法とともに、効率的なMixture-of-Experts(MoE)アーキテクチャを活用する。
Ling-Coder-Liteは、同じサイズの最先端モデルと比較して、12の代表的なコーディングベンチマークでオンパーパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-03-22T15:00:18Z) - Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE [15.003006630308517]
投機的復号(SD)は、より小さなドラフトモデルを用いて複数のトークンを予測することで、大きな言語モデル推論を加速する。
本稿では,専門家の混在(Mixture of Experts, MoE)を利用したJakiroを提案する。
提案手法は予測精度を大幅に向上し,推論高速化を実現する。
論文 参考訳(メタデータ) (2025-02-10T09:24:06Z) - AMUSD: Asynchronous Multi-Device Speculative Decoding for LLM Acceleration [0.3626013617212667]
本稿では,AMUSD (Asynchronous Multi-device Speculative Decoding) を導入し,ドラフトを分離し,フェーズを検証することによって生成を高速化するシステムを提案する。
AMUSDは、1つのモデル(ドラフトまたは検証)のみが一度にトークン生成を行う従来の投機復号法とは異なり、どちらのモデルも別々のデバイス上で独立して予測を行うことができる。
我々は、複数のデータセットに対するアプローチを評価し、AMUSDが投機的復号化よりも平均29%改善し、従来の自己回帰復号化よりも1.96$times$スピードアップを達成したことを示す。
論文 参考訳(メタデータ) (2024-10-22T19:15:35Z) - Expediting and Elevating Large Language Model Reasoning via Hidden Chain-of-Thought Decoding [14.175444025026508]
大規模言語モデル(LLM)は、チェーン・オブ・シント(CoT)のプロンプトを必要とするタスクにおいて顕著な機能を示した。
完全なCoTプロセスを生成すると、出力シーケンスが大幅に長くなり、推論時の計算コストと遅延が増大する。
セマンティックアライメントによってCoTプロセスを圧縮し、CoT推論の利点を保ちながらより効率的な復号化を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-13T06:29:20Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - Fast Inference from Transformers via Speculative Decoding [3.950600027250452]
Transformersのような大規模な自己回帰モデルからの推論は遅く、Kトークンの復号化はモデルのKシリアル実行を伴います。
本研究では,複数のトークンを並列に計算することで,自動回帰モデルから高速にサンプリングするアルゴリズムである投機的復号化を導入する。
論文 参考訳(メタデータ) (2022-11-30T17:33:28Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
我々は、ソースタスクのソフトプロンプトから知識を伝達することで、プロンプトチューニングにおける数ショットのパフォーマンスを改善することに集中する。
我々はソースモデル(SESoM)のサンプル固有アンサンブルを提案する。
SESoMは、ソースモデルが出力されるときに、ターゲットの各サンプルに対するソースモデルのコントリビューションを個別に調整することを学ぶ。
論文 参考訳(メタデータ) (2022-10-23T01:33:16Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
我々はベイズ法の正規化能力を用いて、変分推論問題としてプロンプト学習をフレーム化する。
提案手法は,プロンプト空間を正規化し,目に見えないプロンプトへの過剰適合を低減し,目に見えないプロンプトのプロンプト一般化を改善する。
ベイジアン・プロンプト学習がプロンプト空間の適切なカバレッジを提供する15のベンチマークを実証的に示す。
論文 参考訳(メタデータ) (2022-10-05T17:05:56Z) - Revisiting Code Search in a Two-Stage Paradigm [67.02322603435628]
TOSSは2段階のフュージョンコード検索フレームワークである。
まずIRベースのバイエンコーダモデルを使用して、少数のトップkコード候補を効率的にリコールする。
その後、より微細なクロスエンコーダを使用してランク付けを行う。
論文 参考訳(メタデータ) (2022-08-24T02:34:27Z) - InCoder: A Generative Model for Code Infilling and Synthesis [88.46061996766348]
InCoderは、プログラム合成(左から右への生成)と編集(埋め込み)が可能な統合生成モデルである。
InCoderは、許可されたコードの大きなコーパスからコードファイルを生成するように訓練されている。
私たちのモデルは、ゼロショットコードの埋め込みを直接実行できる最初の生成モデルです。
論文 参考訳(メタデータ) (2022-04-12T16:25:26Z) - UniXcoder: Unified Cross-Modal Pre-training for Code Representation [65.6846553962117]
プログラミング言語のためのクロスモーダル事前学習モデルUniXcoderを提案する。
木の構造情報を全て保持するシーケンス構造でASTを変換する1対1のマッピング手法を提案する。
我々は,UniXcoderを9つのデータセット上で5つのコード関連タスクで評価する。
論文 参考訳(メタデータ) (2022-03-08T04:48:07Z) - Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for
Improved Cross-Modal Retrieval [80.35589927511667]
画像中のすべての単語やオブジェクトに係わるクロスアテンション機構を備えたTransformerベースのアーキテクチャを頼りに、クロスモーダル検索プロセスのテキストとビジュアルインプットへの最先端のアプローチ。
事前学習したテキスト画像のマルチモーダルモデルを効率的な検索モデルに変換する新しい微調整フレームワークを提案する。
我々は,モノリンガル,マルチリンガル,ゼロショットにおける一連の標準クロスモーダル検索ベンチマーク実験を行い,最先端クロスエンコーダに対する精度向上と大幅な効率向上を実証した。
論文 参考訳(メタデータ) (2021-03-22T15:08:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。