論文の概要: LEAD: Large Foundation Model for EEG-Based Alzheimer's Disease Detection
- arxiv url: http://arxiv.org/abs/2502.01678v1
- Date: Sun, 02 Feb 2025 04:19:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:01:16.025393
- Title: LEAD: Large Foundation Model for EEG-Based Alzheimer's Disease Detection
- Title(参考訳): LEAD:脳波によるアルツハイマー病検出のための大規模基礎モデル
- Authors: Yihe Wang, Nan Huang, Nadia Mammone, Marco Cecchi, Xiang Zhang,
- Abstract要約: 脳波を用いたアルツハイマー病検出のための基礎モデルLEADを提案する。
私たちは11のEEGデータセットでモデルを事前トレーニングし、5つのADデータセットで微調整します。
サンプルレベルではF1スコアが9.86%増加し,被験者レベルでは9.31%向上したAD検出性能を示す。
- 参考スコア(独自算出の注目度): 4.935843202928883
- License:
- Abstract: Electroencephalogram (EEG) provides a non-invasive, highly accessible, and cost-effective solution for Alzheimer's Disease (AD) detection. However, existing methods, whether based on manual feature extraction or deep learning, face two major challenges: the lack of large-scale datasets for robust feature learning and evaluation, and poor detection performance due to inter-subject variations. To address these challenges, we curate an EEG-AD corpus containing 813 subjects, which forms the world's largest EEG-AD dataset to the best of our knowledge. Using this unique dataset, we propose LEAD, the first large foundation model for EEG-based AD detection. Our method encompasses an entire pipeline, from data selection and preprocessing to self-supervised contrastive pretraining, fine-tuning, and key setups such as subject-independent evaluation and majority voting for subject-level detection. We pre-train the model on 11 EEG datasets and unified fine-tune it on 5 AD datasets. Our self-supervised pre-training design includes sample-level and subject-level contrasting to extract useful general EEG features. Fine-tuning is performed on 5 channel-aligned datasets together. The backbone encoder incorporates temporal and channel embeddings to capture features across both temporal and spatial dimensions. Our method demonstrates outstanding AD detection performance, achieving up to a 9.86% increase in F1 score at the sample-level and up to a 9.31% at the subject-level compared to state-of-the-art methods. The results of our model strongly confirm the effectiveness of contrastive pre-training and channel-aligned unified fine-tuning for addressing inter-subject variation. The source code is at https://github.com/DL4mHealth/LEAD.
- Abstract(参考訳): 脳波(EEG)は、アルツハイマー病(AD)の検出に非侵襲的で、アクセスしやすく、費用対効果の高いソリューションを提供する。
しかし、手動の特徴抽出や深層学習といった既存の手法では、ロバストな特徴学習と評価のための大規模データセットの欠如、オブジェクト間の変動による検出性能の低下という2つの大きな課題に直面している。
これらの課題に対処するため、我々は813の被験者を含むEEG-ADコーパスをキュレートする。
このユニークなデータセットを用いて,脳波を用いたAD検出のための最初の大規模基盤モデルであるLEADを提案する。
提案手法は,データ選択や前処理から自己監督型コントラスト事前学習,微調整,主観非依存評価や多数決といった重要な設定に至るまで,パイプライン全体を含む。
私たちは11のEEGデータセットでモデルを事前トレーニングし、5つのADデータセットで微調整します。
我々の自己指導型事前学習設計は、サンプルレベルのコントラストと主観レベルのコントラストを含んでおり、有用な一般的な脳波特徴を抽出する。
ファインチューニングは5つのチャネルアラインデータセットで一緒に実行される。
バックボーンエンコーダは、時間的およびチャネル埋め込みを組み込んで、時間的および空間的両方の特徴を捉えている。
提案手法はAD検出性能に優れており, 試料レベルでは9.86%, 被験者レベルでは9.31%まで向上した。
提案モデルの結果は, 物体間変動に対処するために, コントラスト付き事前学習とチャネル整合型微調整の有効性を強く裏付けるものである。
ソースコードはhttps://github.com/DL4mHealth/LEADにある。
関連論文リスト
- ADformer: A Multi-Granularity Transformer for EEG-Based Alzheimer's Disease Assessment [42.72554952799386]
本稿では、時間的・空間的特徴を捉えて効果的な脳波表現を学習するための新しい多粒度変換器Adformerを提案する。
被験者依存,主観非依存,離脱対象外を含む5つのデータセットを対象に,合計525人の被験者を対象に実験を行った。
以上の結果から,ADformerは既存の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-17T14:10:41Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
本研究では,脳波信号を用いたパーキンソン病(PD)の深層学習モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)、双方向ゲートリカレントユニット(Bi-GRU)、アテンションメカニズムからなるハイブリッドモデルを用いて設計されている。
その結果,提案モデルでは,トレーニングとホールドアウトデータセットの両方でPDを高精度に診断できることが示唆された。
論文 参考訳(メタデータ) (2023-08-14T20:06:19Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Application of federated learning techniques for arrhythmia
classification using 12-lead ECG signals [0.11184789007828977]
この作業では、フェデレートラーニング(FL)プライバシ保護方法論を使用して、高定義のECGの異種集合上でAIモデルをトレーニングする。
CL, IID, 非IIDアプローチを用いて訓練したモデルと比較した。
論文 参考訳(メタデータ) (2022-08-23T14:21:16Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。