論文の概要: Firewalls to Secure Dynamic LLM Agentic Networks
- arxiv url: http://arxiv.org/abs/2502.01822v4
- Date: Thu, 22 May 2025 14:33:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:21.435193
- Title: Firewalls to Secure Dynamic LLM Agentic Networks
- Title(参考訳): 動的LLMエージェントネットワークを保護するファイアウォール
- Authors: Sahar Abdelnabi, Amr Gomaa, Eugene Bagdasarian, Per Ola Kristensson, Reza Shokri,
- Abstract要約: LLMエージェントは、相互依存的な目標を持つ長期計画に関わるタスクについて、他のエンティティ表現エージェントとユーザに代わって通信する可能性が高い。
エージェント通信に必要な特性として,プロアクティビティ,適応性,プライバシ(タスク必要情報のみを共有する),セキュリティを挙げる。
本稿では,ネットワークセキュリティの原則にインスパイアされた実用的な設計とプロトコルを提案する。
- 参考スコア(独自算出の注目度): 36.6600856429565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM agents will likely communicate on behalf of users with other entity-representing agents on tasks involving long-horizon plans with interdependent goals. Current work neglects these agentic networks and their challenges. We identify required properties for agent communication: proactivity, adaptability, privacy (sharing only task-necessary information), and security (preserving integrity and utility against selfish entities). After demonstrating communication vulnerabilities, we propose a practical design and protocol inspired by network security principles. Our framework automatically derives task-specific rules from prior conversations to build firewalls. These firewalls construct a closed language that is completely controlled by the developer. They transform any personal data to the allowed degree of permissibility entailed by the task. Both operations are completely quarantined from external attackers, disabling the potential for prompt injections, jailbreaks, or manipulation. By incorporating rules learned from their previous mistakes, agents rewrite their instructions and self-correct during communication. Evaluations on diverse attacks demonstrate our framework significantly reduces privacy and security vulnerabilities while allowing adaptability.
- Abstract(参考訳): LLMエージェントは、相互依存的な目標を持つ長期計画に関わるタスクについて、他のエンティティ表現エージェントとユーザに代わって通信する可能性が高い。
現在の作業はエージェントネットワークとその課題を無視している。
エージェント通信に必要な特性として,プロアクティブ性,適応性,プライバシ(タスク要求情報のみを共有する),セキュリティ(利己的なエンティティに対する整合性とユーティリティの保存)を識別する。
通信の脆弱性を実証した後、ネットワークセキュリティの原則に触発された実用的な設計とプロトコルを提案する。
私たちのフレームワークは、以前の会話からタスク固有のルールを自動的に導き出し、ファイアウォールを構築します。
これらのファイアウォールは、開発者によって完全に制御されるクローズド言語を構築します。
彼らは、あらゆる個人データをタスクが持つ許容度に変換する。
どちらの操作も外部攻撃者から完全に隔離されており、迅速な注入、脱獄、操作の可能性を無効にしている。
以前のミスから学んだルールを取り入れることで、エージェントはコミュニケーション中に命令を書き直し、自己修正を行う。
多様な攻撃の評価は、我々のフレームワークが適応性を確保しながら、プライバシーとセキュリティの脆弱性を著しく低減していることを示している。
関連論文リスト
- SAGA: A Security Architecture for Governing AI Agentic Systems [13.106925341037046]
大規模言語モデル(LLM)ベースのエージェントは、最小限の人間インタラクションでタスクを自律的に相互に対話し、協力し、委譲する傾向にある。
エージェントシステムガバナンスの業界ガイドラインは、ユーザがエージェントの包括的な制御を維持する必要性を強調している。
我々はエージェントシステムのセキュリティアーキテクチャであるSAGAを提案し,エージェントのライフサイクルをユーザから監視する。
論文 参考訳(メタデータ) (2025-04-27T23:10:00Z) - Progent: Programmable Privilege Control for LLM Agents [46.49787947705293]
LLMエージェントの最初の特権制御機構であるProgentを紹介する。
コアとなるのは、エージェント実行中に適用される権限制御ポリシを柔軟に表現するためのドメイン固有言語である。
これにより、エージェント開発者とユーザは、特定のユースケースに対して適切なポリシーを作成し、セキュリティを保証するために決定的にそれらを強制することができる。
論文 参考訳(メタデータ) (2025-04-16T01:58:40Z) - The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents [6.829628038851487]
大きな言語モデル(LLM)エージェントは、ツール統合を通じて複雑な現実世界のタスクを実行できる対話アシスタントとして、ますます多くデプロイされている。
特に間接的なプロンプトインジェクション攻撃は、外部データソースに埋め込まれた悪意のある命令が、エージェントを操作してユーザの意図を逸脱させる、重大な脅威となる。
我々は,エージェントのセキュリティが有害な行為を防止し,タスクアライメントを確保するためには,すべてのエージェントアクションをユーザ目的に役立てる必要がある,という新たな視点を提案する。
論文 参考訳(メタデータ) (2024-12-21T16:17:48Z) - SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World [50.937342998351426]
COUT(Chain-of-User-Thought)は、新しい推論パラダイムである。
我々は、サイバー環境を認識し、パーソナライズされた要求を推論するエージェントフレームワークであるSmartAgentを紹介する。
我々の研究は、まずCOUTプロセスを定式化し、パーソナライズされたエージェント学習を具体化するための予備的な試みとして役立ちます。
論文 参考訳(メタデータ) (2024-12-10T12:40:35Z) - DAWN: Designing Distributed Agents in a Worldwide Network [0.38447712214412116]
DAWNはグローバルに分散エージェントを登録し、ゲートウェイエージェントを通じて簡単に発見できる。
No-LLM Mode for Deterministic Task, Copilot for augmented decision-making, and LLM Agent for autonomous operations。
DAWNは、専用の安全性、セキュリティ、コンプライアンスレイヤを通じて、世界中のエージェントコラボレーションの安全性とセキュリティを保証する。
論文 参考訳(メタデータ) (2024-10-11T18:47:04Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
プロアクティブエージェントプランニングでは、ユーザエージェントの会話とエージェント環境のインタラクションに基づいて、言語エージェントが明確化のニーズを予測する必要がある。
本稿では,明確化,実行,計画の3つのエージェントからなる新しいマルチエージェントフレームワーク,Clarification-Execution-Planning(textttCEP)を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:07:28Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
大規模言語モデル(LLM)の安全性を高める既存の手法は、LLMエージェントに直接転送することはできない。
我々は、他のLLMエージェントに対するガードレールとして、最初のLLMエージェントであるGuardAgentを提案する。
GuardAgentは、1)提供されたガードリクエストを分析してタスクプランを作成し、2)タスクプランに基づいてガードレールコードを生成し、APIを呼び出すか、または外部エンジンを使用してコードを実行する。
論文 参考訳(メタデータ) (2024-06-13T14:49:26Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
汎用ロボットは、現実世界の非構造環境において困難なタスクを完了するために、多様な行動レパートリーを必要とする。
この問題に対処するため、目標条件強化学習は、コマンド上の幅広いタスクの目標に到達可能なポリシーを取得することを目的としている。
本研究では,長期的課題に対する目標条件付き政策を実践的に訓練する手法であるPlanning to Practiceを提案する。
論文 参考訳(メタデータ) (2022-05-17T06:58:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。