論文の概要: DAWN: Designing Distributed Agents in a Worldwide Network
- arxiv url: http://arxiv.org/abs/2410.22339v2
- Date: Mon, 18 Nov 2024 17:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:51.149989
- Title: DAWN: Designing Distributed Agents in a Worldwide Network
- Title(参考訳): DAWN:グローバルネットワークにおける分散エージェントの設計
- Authors: Zahra Aminiranjbar, Jianan Tang, Qiudan Wang, Shubha Pant, Mahesh Viswanathan,
- Abstract要約: DAWNはグローバルに分散エージェントを登録し、ゲートウェイエージェントを通じて簡単に発見できる。
No-LLM Mode for Deterministic Task, Copilot for augmented decision-making, and LLM Agent for autonomous operations。
DAWNは、専用の安全性、セキュリティ、コンプライアンスレイヤを通じて、世界中のエージェントコラボレーションの安全性とセキュリティを保証する。
- 参考スコア(独自算出の注目度): 0.38447712214412116
- License:
- Abstract: The rapid evolution of Large Language Models (LLMs) has transformed them from basic conversational tools into sophisticated entities capable of complex reasoning and decision-making. These advancements have led to the development of specialized LLM-based agents designed for diverse tasks such as coding and web browsing. As these agents become more capable, the need for a robust framework that facilitates global communication and collaboration among them towards advanced objectives has become increasingly critical. Distributed Agents in a Worldwide Network (DAWN) addresses this need by offering a versatile framework that integrates LLM-based agents with traditional software systems, enabling the creation of agentic applications suited for a wide range of use cases. DAWN enables distributed agents worldwide to register and be easily discovered through Gateway Agents. Collaborations among these agents are coordinated by a Principal Agent equipped with reasoning strategies. DAWN offers three operational modes: No-LLM Mode for deterministic tasks, Copilot for augmented decision-making, and LLM Agent for autonomous operations. Additionally, DAWN ensures the safety and security of agent collaborations globally through a dedicated safety, security, and compliance layer, protecting the network against attackers and adhering to stringent security and compliance standards. These features make DAWN a robust network for deploying agent-based applications across various industries.
- Abstract(参考訳): LLM(Large Language Models)の急速な進化は、それらを基本的な対話ツールから、複雑な推論と意思決定が可能な洗練されたエンティティに変えた。
これらの進歩により、コーディングやWebブラウジングといった様々なタスク用に設計された特殊なLSMベースのエージェントが開発されるようになった。
これらのエージェントがより有能になるにつれて、グローバルなコミュニケーションと高度な目標に向けたコラボレーションを促進する堅牢なフレームワークの必要性がますます重要になっている。
世界規模のネットワークにおける分散エージェント(DAWN)は、従来のソフトウェアシステムとLLMベースのエージェントを統合する汎用的なフレームワークを提供することによって、このニーズに対処する。
DAWNはグローバルに分散エージェントを登録し、ゲートウェイエージェントを通じて簡単に発見できる。
これらのエージェント間のコラボレーションは、推論戦略を備えたプリンシパルエージェントによって調整される。
DAWNは3つの運用モードを提供している: 決定論的タスクのためのNo-LLMモード、強化された意思決定のためのCopilot、自律的な操作のためのLLMエージェント。
さらにDAWNは、エージェントコラボレーションの安全性とセキュリティを、専用の安全層、セキュリティ層、コンプライアンス層を通じてグローバルに保証し、ネットワークを攻撃者から保護し、厳格なセキュリティとコンプライアンス標準に準拠している。
これらの機能はDAWNをさまざまな業界にエージェントベースのアプリケーションをデプロイするための堅牢なネットワークにする。
関連論文リスト
- Red-Teaming LLM Multi-Agent Systems via Communication Attacks [10.872328358364776]
大規模言語モデルに基づくマルチエージェントシステム(LLM-MAS)は、メッセージベースのコミュニケーションを通じて高度なエージェント協調を可能にすることで、複雑な問題解決能力に革命をもたらした。
エージェント・イン・ザ・ミドル(AiTM, Agent-in-the-Middle)は、エージェント間メッセージのインターセプトと操作によってLLM-MASの基本的な通信機構を利用する新たな攻撃法である。
論文 参考訳(メタデータ) (2025-02-20T18:55:39Z) - Multi-Agent Collaboration in Incident Response with Large Language Models [0.0]
インシデント対応(IR)はサイバーセキュリティの重要な側面であり、サイバー攻撃を効果的に対処するために、迅速な意思決定と協調的な努力が必要である。
大きな言語モデル(LLM)をインテリジェントエージェントとして活用することは、IRシナリオにおけるコラボレーションと効率を高めるための新しいアプローチを提供する。
本稿では,Backdoors & Breaches フレームワークを用いた LLM ベースのマルチエージェントコラボレーションの適用について検討する。
論文 参考訳(メタデータ) (2024-12-01T03:12:26Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
我々は、様々なドメインにわたる複雑なユースケースアプリケーションを扱う柔軟なエージェントエンジニアリングフレームワークの設計に重点を置いている。
提案するフレームワークは,産業用アプリケーションの信頼性を提供し,複数の自律エージェントに対して,スケーラブルでフレキシブルで協調的なワークフローを保証するためのテクニックを提供する。
論文 参考訳(メタデータ) (2024-06-28T16:39:20Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - TrustAgent: Towards Safe and Trustworthy LLM-based Agents [50.33549510615024]
本稿では,エージェント・コンスティチューションをベースとしたエージェント・フレームワークであるTrustAgentについて述べる。
提案枠組みは,計画立案前のモデルに安全知識を注入する事前計画戦略,計画立案時の安全性を高める内計画戦略,計画後検査による安全性を確保する後計画戦略の3つの戦略要素を通じて,エージェント憲法の厳格な遵守を保証する。
論文 参考訳(メタデータ) (2024-02-02T17:26:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。