Digital quantum simulation of bosonic systems and quantum complementarity
- URL: http://arxiv.org/abs/2502.01824v1
- Date: Mon, 03 Feb 2025 21:04:34 GMT
- Title: Digital quantum simulation of bosonic systems and quantum complementarity
- Authors: Victor P. Brasil, Diego S. Starke, Jonas Maziero,
- Abstract summary: Many-particle bosonic systems and intricate optical experimental setups pose significant challenges for classical simulation methods.
We digitally simulate interferometric variants of Afshar's experiment on IBM's quantum computers.
We analyze these experiments within the framework of an updated quantum complementarity principle.
- Score: 0.0
- License:
- Abstract: Digital quantum simulation has emerged as a powerful approach to investigate complex quantum systems using digital quantum computers. Many-particle bosonic systems and intricate optical experimental setups pose significant challenges for classical simulation methods. Utilizing a recently developed formalism that maps bosonic operators to Pauli operators via the Gray code, we digitally simulate interferometric variants of Afshar's experiment on IBM's quantum computers. We investigate the analogous experiments of Unruh and Pessoa J\'unior, exploring discussions on the apparent violation of Bohr's complementarity principle when considering the entire experimental setup. Furthermore, we analyze these experiments within the framework of an updated quantum complementarity principle, which applies to specific quantum state preparations and remains consistent with the foundational principles of quantum mechanics. Our quantum computer demonstration results are in good agreement with the theoretical predictions and underscore the potential of quantum computers as effective simulators for bosonic systems.
Related papers
- Digital Quantum Simulations of Hong-Ou-Mandel Interference [0.26813152817733554]
We discuss the application of digital quantum simulations to simulate a bosonic system, a beam splitter.
We validated our quantum circuit that mimics the action of a beam splitter by simulating the Hong-Ou-Mandel interference experiment.
arXiv Detail & Related papers (2024-02-27T14:05:34Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Quantum metrology in complex systems and experimental verification by
quantum simulation [3.1179335904543537]
We briefly review the schemes of quantum metrology in various complex systems, including non-Markovian noise, correlated noise, quantum critical system.
On the other hand, the booming development of quantum information allows us to utilize quantum simulation experiments to test the feasibility of various theoretical schemes.
arXiv Detail & Related papers (2023-07-05T03:29:56Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Solving hadron structures using the basis light-front quantization
approach on quantum computers [0.8726465590483234]
We show that quantum computing can be used to solve for the structure of hadrons governed by strongly-interacting quantum field theory.
We present the numerical calculations on simulated quantum devices using the basis light-front quantization approach.
arXiv Detail & Related papers (2021-12-03T14:28:18Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Experimental simulation of open quantum system dynamics via
Trotterization [8.581263348642212]
We experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment.
By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized.
High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy.
arXiv Detail & Related papers (2021-08-05T06:17:26Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Digital quantum simulation framework for energy transport in an open
quantum system [1.9551668880584971]
Digital quantum simulations offer greater universality and flexibility over analog simulations.
We give a theoretical framework for digital quantum simulation of ENAQT by introducing new quantum evolution operators.
We simulate the FMO complex in the digital setting, reproducing theoretical and experimental evidence of the dynamics.
arXiv Detail & Related papers (2020-06-25T02:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.