Quantum metrology in complex systems and experimental verification by
quantum simulation
- URL: http://arxiv.org/abs/2307.02005v1
- Date: Wed, 5 Jul 2023 03:29:56 GMT
- Title: Quantum metrology in complex systems and experimental verification by
quantum simulation
- Authors: Qing Ai, Yang-Yang Wang, Jing Qiu
- Abstract summary: We briefly review the schemes of quantum metrology in various complex systems, including non-Markovian noise, correlated noise, quantum critical system.
On the other hand, the booming development of quantum information allows us to utilize quantum simulation experiments to test the feasibility of various theoretical schemes.
- Score: 3.1179335904543537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum metrology based on quantum entanglement and quantum coherence
improves the accuracy of measurement. In this paper, we briefly review the
schemes of quantum metrology in various complex systems, including
non-Markovian noise, correlated noise, quantum critical system. On the other
hand, the booming development of quantum information allows us to utilize
quantum simulation experiments to test the feasibility of various theoretical
schemes and demonstrate the rich physical phenomena in complex systems, such as
bound states in one-dimensional coupled cavity arrays, single-photon switches
and routers.
Related papers
- Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Experimental optical simulator of reconfigurable and complex quantum
environment [0.0]
We demonstrate an optical simulator of a quantum system coupled to an arbitrary and reconfigurable environment.
We experimentally retrieve typical features of open quantum system dynamics.
This opens the way to the experimental tests of open quantum systems in reconfigurable environments.
arXiv Detail & Related papers (2023-02-24T14:55:49Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Experimental simulation of open quantum system dynamics via
Trotterization [8.581263348642212]
We experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment.
By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized.
High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy.
arXiv Detail & Related papers (2021-08-05T06:17:26Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Impacts of Noise and Structure on Quantum Information Encoded in a
Quantum Memory [0.6332429219530602]
We study the correlation of the structure of quantum information with physical noise models of various possible quantum memory implementations.
Our findings point to simple, experimentally relevant formulas for the relative lifetimes of quantum information in different quantum memories.
arXiv Detail & Related papers (2020-11-26T06:12:24Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.